亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper aims at a brief overview of the main impact of ChatGTP in the scientific field of programming and learning/education in computer science. It lists, covers and documents from the literature the major issues that have been identified for this topic, such as applications, advantages and limitations, ethical issues raised. Answers to the above questions were solicited from ChatGPT itself, the responses were collected, and then the recent literature was surveyed to determine whether or not the responses are supported. The paper ends with a short discussion on what is expected to happen in the near future. A future that can be extremely promising if humanity manages to have AI as a proper ally and partner, with distinct roles and specific rules of cooperation and interaction.

相關內容

ChatGPT(全名:Chat Generative Pre-trained Transformer),美國OpenAI 研發的聊天機器人程序 [1] ,于2022年11月30日發布 。ChatGPT是人工智能技術驅動的自然語言處理工具,它能夠通過學習和理解人類的語言來進行對話,還能根據聊天的上下文進行互動,真正像人類一樣來聊天交流,甚至能完成撰寫郵件、視頻腳本、文案、翻譯、代碼,寫論文任務。 [1] //openai.com/blog/chatgpt/

This study compares the performance of (1) fine-tuned models and (2) extremely large language models on the task of check-worthy claim detection. For the purpose of the comparison we composed a multilingual and multi-topical dataset comprising texts of various sources and styles. Building on this, we performed a benchmark analysis to determine the most general multilingual and multi-topical claim detector. We chose three state-of-the-art models in the check-worthy claim detection task and fine-tuned them. Furthermore, we selected three state-of-the-art extremely large language models without any fine-tuning. We made modifications to the models to adapt them for multilingual settings and through extensive experimentation and evaluation. We assessed the performance of all the models in terms of accuracy, recall, and F1-score in in-domain and cross-domain scenarios. Our results demonstrate that despite the technological progress in the area of natural language processing, the models fine-tuned for the task of check-worthy claim detection still outperform the zero-shot approaches in a cross-domain settings.

This paper introduces a reinforcement learning (RL) approach to address the challenges associated with configuring and optimizing genetic algorithms (GAs) for solving difficult combinatorial or non-linear problems. The proposed RL+GA method was specifically tested on the flow shop scheduling problem (FSP). The hybrid algorithm incorporates neural networks (NN) and uses the off-policy method Q-learning or the on-policy method Sarsa(0) to control two key genetic algorithm (GA) operators: parent selection mechanism and mutation. At each generation, the RL agent's action is determining the selection method, the probability of the parent selection and the probability of the offspring mutation. This allows the RL agent to dynamically adjust the selection and mutation based on its learned policy. The results of the study highlight the effectiveness of the RL+GA approach in improving the performance of the primitive GA. They also demonstrate its ability to learn and adapt from population diversity and solution improvements over time. This adaptability leads to improved scheduling solutions compared to static parameter configurations while maintaining population diversity throughout the evolutionary process.

During the development of large language models (LLMs), the scale and quality of the pre-training data play a crucial role in shaping LLMs' capabilities. To accelerate the research of LLMs, several large-scale datasets, such as C4 [1], Pile [2], RefinedWeb [3] and WanJuan [4], have been released to the public. However, most of the released corpus focus mainly on English, and there is still lack of complete tool-chain for extracting clean texts from web data. Furthermore, fine-grained information of the corpus, e.g. the quality of each text, is missing. To address these challenges, we propose in this paper a new complete tool-chain EvalWeb to extract Chinese clean texts from noisy web data. First, similar to previous work, manually crafted rules are employed to discard explicit noisy texts from the raw crawled web contents. Second, a well-designed evaluation model is leveraged to assess the remaining relatively clean data, and each text is assigned a specific quality score. Finally, we can easily utilize an appropriate threshold to select the high-quality pre-training data for Chinese. Using our proposed approach, we release the largest and latest large-scale high-quality Chinese web text ChineseWebText, which consists of 1.42 TB and each text is associated with a quality score, facilitating the LLM researchers to choose the data according to the desired quality thresholds. We also release a much cleaner subset of 600 GB Chinese data with the quality exceeding 90%.

Causal investigations in observational studies pose a great challenge in scientific research where randomized trials or intervention-based studies are not feasible. Leveraging Shannon's seminal work on information theory, we consider a framework of asymmetry where any causal link between putative cause and effect must be explained through a mechanism governing the cause as well as a generative process yielding an effect of the cause. Under weak assumptions, this framework enables the assessment of whether X is a stronger predictor of Y or vice-versa. Under stronger identifiability assumptions our framework is able to distinguish between cause and effect using observational data. We establish key statistical properties of this framework. Our proposed methodology relies on scalable non-parametric density estimation using fast Fourier transformation. The resulting estimation method is manyfold faster than the classical bandwidth-based density estimation while maintaining comparable mean integrated squared error rates. We investigate key asymptotic properties of our methodology and introduce a data-splitting technique to facilitate inference. The key attraction of our framework is its inference toolkit, which allows researchers to quantify uncertainty in causal discovery findings. We illustrate the performance of our methodology through simulation studies as well as multiple real data examples.

We present a framework for the efficient computation of optimal Bayesian decisions under intractable likelihoods, by learning a surrogate model for the expected utility (or its distribution) as a function of the action and data spaces. We leverage recent advances in simulation-based inference and Bayesian optimization to develop active learning schemes to choose where in parameter and action spaces to simulate. This allows us to learn the optimal action in as few simulations as possible. The resulting framework is extremely simulation efficient, typically requiring fewer model calls than the associated posterior inference task alone, and a factor of $100-1000$ more efficient than Monte-Carlo based methods. Our framework opens up new capabilities for performing Bayesian decision making, particularly in the previously challenging regime where likelihoods are intractable, and simulations expensive.

Pretrained transformers exhibit the remarkable ability of in-context learning (ICL): they can learn tasks from just a few examples provided in the prompt without updating any weights. This raises a foundational question: can ICL solve fundamentally $\textit{new}$ tasks that are very different from those seen during pretraining? To probe this question, we examine ICL's performance on linear regression while varying the diversity of tasks in the pretraining dataset. We empirically demonstrate a $\textit{task diversity threshold}$ for the emergence of ICL. Below this threshold, the pretrained transformer cannot solve unseen regression tasks, instead behaving like a Bayesian estimator with the $\textit{non-diverse pretraining task distribution}$ as the prior. Beyond this threshold, the transformer significantly outperforms this estimator; its behavior aligns with that of ridge regression, corresponding to a Gaussian prior over $\textit{all tasks}$, including those not seen during pretraining. Thus, when pretrained on data with task diversity greater than the threshold, transformers $\textit{can}$ optimally solve fundamentally new tasks in-context. Importantly, this capability hinges on it deviating from the Bayes optimal estimator with the pretraining distribution as the prior. This study also explores the effect of regularization, model capacity and task structure and underscores, in a concrete example, the critical role of task diversity, alongside data and model scale, in the emergence of ICL. Code is available at //github.com/mansheej/icl-task-diversity.

This paper surveys vision-language pre-training (VLP) methods for multimodal intelligence that have been developed in the last few years. We group these approaches into three categories: ($i$) VLP for image-text tasks, such as image captioning, image-text retrieval, visual question answering, and visual grounding; ($ii$) VLP for core computer vision tasks, such as (open-set) image classification, object detection, and segmentation; and ($iii$) VLP for video-text tasks, such as video captioning, video-text retrieval, and video question answering. For each category, we present a comprehensive review of state-of-the-art methods, and discuss the progress that has been made and challenges still being faced, using specific systems and models as case studies. In addition, for each category, we discuss advanced topics being actively explored in the research community, such as big foundation models, unified modeling, in-context few-shot learning, knowledge, robustness, and computer vision in the wild, to name a few.

Incorporating prior knowledge into pre-trained language models has proven to be effective for knowledge-driven NLP tasks, such as entity typing and relation extraction. Current pre-training procedures usually inject external knowledge into models by using knowledge masking, knowledge fusion and knowledge replacement. However, factual information contained in the input sentences have not been fully mined, and the external knowledge for injecting have not been strictly checked. As a result, the context information cannot be fully exploited and extra noise will be introduced or the amount of knowledge injected is limited. To address these issues, we propose MLRIP, which modifies the knowledge masking strategies proposed by ERNIE-Baidu, and introduce a two-stage entity replacement strategy. Extensive experiments with comprehensive analyses illustrate the superiority of MLRIP over BERT-based models in military knowledge-driven NLP tasks.

Artificial neural networks thrive in solving the classification problem for a particular rigid task, acquiring knowledge through generalized learning behaviour from a distinct training phase. The resulting network resembles a static entity of knowledge, with endeavours to extend this knowledge without targeting the original task resulting in a catastrophic forgetting. Continual learning shifts this paradigm towards networks that can continually accumulate knowledge over different tasks without the need to retrain from scratch. We focus on task incremental classification, where tasks arrive sequentially and are delineated by clear boundaries. Our main contributions concern 1) a taxonomy and extensive overview of the state-of-the-art, 2) a novel framework to continually determine the stability-plasticity trade-off of the continual learner, 3) a comprehensive experimental comparison of 11 state-of-the-art continual learning methods and 4 baselines. We empirically scrutinize method strengths and weaknesses on three benchmarks, considering Tiny Imagenet and large-scale unbalanced iNaturalist and a sequence of recognition datasets. We study the influence of model capacity, weight decay and dropout regularization, and the order in which the tasks are presented, and qualitatively compare methods in terms of required memory, computation time, and storage.

Deep learning constitutes a recent, modern technique for image processing and data analysis, with promising results and large potential. As deep learning has been successfully applied in various domains, it has recently entered also the domain of agriculture. In this paper, we perform a survey of 40 research efforts that employ deep learning techniques, applied to various agricultural and food production challenges. We examine the particular agricultural problems under study, the specific models and frameworks employed, the sources, nature and pre-processing of data used, and the overall performance achieved according to the metrics used at each work under study. Moreover, we study comparisons of deep learning with other existing popular techniques, in respect to differences in classification or regression performance. Our findings indicate that deep learning provides high accuracy, outperforming existing commonly used image processing techniques.

北京阿比特科技有限公司