This paper presents a robust version of the stratified sampling method when multiple uncertain input models are considered for stochastic simulation. Various variance reduction techniques have demonstrated their superior performance in accelerating simulation processes. Nevertheless, they often use a single input model and further assume that the input model is exactly known and fixed. We consider more general cases in which it is necessary to assess a simulation's response to a variety of input models, such as when evaluating the reliability of wind turbines under nonstationary wind conditions or the operation of a service system when the distribution of customer inter-arrival time is heterogeneous at different times. Moreover, the estimation variance may be considerably impacted by uncertainty in input models. To address such nonstationary and uncertain input models, we offer a distributionally robust (DR) stratified sampling approach with the goal of minimizing the maximum of worst-case estimator variances among plausible but uncertain input models. Specifically, we devise a bi-level optimization framework for formulating DR stochastic problems with different ambiguity set designs, based on the $L_2$-norm, 1-Wasserstein distance, parametric family of distributions, and distribution moments. In order to cope with the non-convexity of objective function, we present a solution approach that uses Bayesian optimization. Numerical experiments and the wind turbine case study demonstrate the robustness of the proposed approach.
Diffusion model-based speech enhancement has received increased attention since it can generate very natural enhanced signals and generalizes well to unseen conditions. Diffusion models have been explored for several sub-tasks of speech enhancement, such as speech denoising, dereverberation, and source separation. In this paper, we investigate their use for target speech extraction (TSE), which consists of estimating the clean speech signal of a target speaker in a mixture of multi-talkers. TSE is realized by conditioning the extraction process on a clue identifying the target speaker. We show we can realize TSE using a conditional diffusion model conditioned on the clue. Besides, we introduce ensemble inference to reduce potential extraction errors caused by the diffusion process. In experiments on Libri2mix corpus, we show that the proposed diffusion model-based TSE combined with ensemble inference outperforms a comparable TSE system trained discriminatively.
Preliminary trajectory design is a global search problem that seeks multiple qualitatively different solutions to a trajectory optimization problem. Due to its high dimensionality and non-convexity, and the frequent adjustment of problem parameters, the global search becomes computationally demanding. In this paper, we exploit the clustering structure in the solutions and propose an amortized global search (AmorGS) framework. We use deep generative models to predict trajectory solutions that share similar structures with previously solved problems, which accelerates the global search for unseen parameter values. Our method is evaluated using De Jong's 5th function and a low-thrust circular restricted three-body problem.
Learning algorithms that divide the data into batches are prevalent in many machine-learning applications, typically offering useful trade-offs between computational efficiency and performance. In this paper, we examine the benefits of batch-partitioning through the lens of a minimum-norm overparameterized linear regression model with isotropic Gaussian features. We suggest a natural small-batch version of the minimum-norm estimator, and derive an upper bound on its quadratic risk, showing it is inversely proportional to the noise level as well as to the overparameterization ratio, for the optimal choice of batch size. In contrast to minimum-norm, our estimator admits a stable risk behavior that is monotonically increasing in the overparameterization ratio, eliminating both the blowup at the interpolation point and the double-descent phenomenon. Interestingly, we observe that this implicit regularization offered by the batch partition is partially explained by feature overlap between the batches. Our bound is derived via a novel combination of techniques, in particular normal approximation in the Wasserstein metric of noisy projections over random subspaces.
This paper proposes a computationally efficient framework, based on interval analysis, for rigorous verification of nonlinear continuous-time dynamical systems with neural network controllers. Given a neural network, we use an existing verification algorithm to construct inclusion functions for its input-output behavior. Inspired by mixed monotone theory, we embed the closed-loop dynamics into a larger system using an inclusion function of the neural network and a decomposition function of the open-loop system. This embedding provides a scalable approach for safety analysis of the neural control loop while preserving the nonlinear structure of the system. We show that one can efficiently compute hyper-rectangular over-approximations of the reachable sets using a single trajectory of the embedding system. We design an algorithm to leverage this computational advantage through partitioning strategies, improving our reachable set estimates while balancing its runtime with tunable parameters. We demonstrate the performance of this algorithm through two case studies. First, we demonstrate this method's strength in complex nonlinear environments. Then, we show that our approach matches the performance of the state-of-the art verification algorithm for linear discretized systems.
This paper develops an inferential framework for matrix completion when missing is not at random and without the requirement of strong signals. Our development is based on the observation that if the number of missing entries is small enough compared to the panel size, then they can be estimated well even when missing is not at random. Taking advantage of this fact, we divide the missing entries into smaller groups and estimate each group via nuclear norm regularization. In addition, we show that with appropriate debiasing, our proposed estimate is asymptotically normal even for fairly weak signals. Our work is motivated by recent research on the Tick Size Pilot Program, an experiment conducted by the Security and Exchange Commission (SEC) to evaluate the impact of widening the tick size on the market quality of stocks from 2016 to 2018. While previous studies were based on traditional regression or difference-in-difference methods by assuming that the treatment effect is invariant with respect to time and unit, our analyses suggest significant heterogeneity across units and intriguing dynamics over time during the pilot program.
The problem of bandit with graph feedback generalizes both the multi-armed bandit (MAB) problem and the learning with expert advice problem by encoding in a directed graph how the loss vector can be observed in each round of the game. The mini-max regret is closely related to the structure of the feedback graph and their connection is far from being fully understood. We propose a new algorithmic framework for the problem based on a partition of the feedback graph. Our analysis reveals the interplay between various parts of the graph by decomposing the regret to the sum of the regret caused by small parts and the regret caused by their interaction. As a result, our algorithm can be viewed as an interpolation and generalization of the optimal algorithms for MAB and learning with expert advice. Our framework unifies previous algorithms for both strongly observable graphs and weakly observable graphs, resulting in improved and optimal regret bounds on a wide range of graph families including graphs of bounded degree and strongly observable graphs with a few corrupted arms.
This paper introduces a new method that embeds any Bayesian model used to generate synthetic data and converts it into a differentially private (DP) mechanism. We propose an alteration of the model synthesizer to utilize a censored likelihood that induces upper and lower bounds of [$\exp(-\epsilon / 2), \exp(\epsilon / 2)$], where $\epsilon$ denotes the level of the DP guarantee. This censoring mechanism equipped with an $\epsilon-$DP guarantee will induce distortion into the joint parameter posterior distribution by flattening or shifting the distribution towards a weakly informative prior. To minimize the distortion in the posterior distribution induced by likelihood censoring, we embed a vector-weighted pseudo posterior mechanism within the censoring mechanism. The pseudo posterior is formulated by selectively downweighting each likelihood contribution proportionally to its disclosure risk. On its own, the pseudo posterior mechanism produces a weaker asymptotic differential privacy (aDP) guarantee. After embedding in the censoring mechanism, the DP guarantee becomes strict such that it does not rely on asymptotics. We demonstrate that the pseudo posterior mechanism creates synthetic data with the highest utility at the price of a weaker, aDP guarantee, while embedding the pseudo posterior mechanism in the proposed censoring mechanism produces synthetic data with a stronger, non-asymptotic DP guarantee at the cost of slightly reduced utility. The perturbed histogram mechanism is included for comparison.
We address the task of automatically scoring the competency of candidates based on textual features, from the automatic speech recognition (ASR) transcriptions in the asynchronous video job interview (AVI). The key challenge is how to construct the dependency relation between questions and answers, and conduct the semantic level interaction for each question-answer (QA) pair. However, most of the recent studies in AVI focus on how to represent questions and answers better, but ignore the dependency information and interaction between them, which is critical for QA evaluation. In this work, we propose a Hierarchical Reasoning Graph Neural Network (HRGNN) for the automatic assessment of question-answer pairs. Specifically, we construct a sentence-level relational graph neural network to capture the dependency information of sentences in or between the question and the answer. Based on these graphs, we employ a semantic-level reasoning graph attention network to model the interaction states of the current QA session. Finally, we propose a gated recurrent unit encoder to represent the temporal question-answer pairs for the final prediction. Empirical results conducted on CHNAT (a real-world dataset) validate that our proposed model significantly outperforms text-matching based benchmark models. Ablation studies and experimental results with 10 random seeds also show the effectiveness and stability of our models.
Translational distance-based knowledge graph embedding has shown progressive improvements on the link prediction task, from TransE to the latest state-of-the-art RotatE. However, N-1, 1-N and N-N predictions still remain challenging. In this work, we propose a novel translational distance-based approach for knowledge graph link prediction. The proposed method includes two-folds, first we extend the RotatE from 2D complex domain to high dimension space with orthogonal transforms to model relations for better modeling capacity. Second, the graph context is explicitly modeled via two directed context representations. These context representations are used as part of the distance scoring function to measure the plausibility of the triples during training and inference. The proposed approach effectively improves prediction accuracy on the difficult N-1, 1-N and N-N cases for knowledge graph link prediction task. The experimental results show that it achieves better performance on two benchmark data sets compared to the baseline RotatE, especially on data set (FB15k-237) with many high in-degree connection nodes.
We propose a new method for event extraction (EE) task based on an imitation learning framework, specifically, inverse reinforcement learning (IRL) via generative adversarial network (GAN). The GAN estimates proper rewards according to the difference between the actions committed by the expert (or ground truth) and the agent among complicated states in the environment. EE task benefits from these dynamic rewards because instances and labels yield to various extents of difficulty and the gains are expected to be diverse -- e.g., an ambiguous but correctly detected trigger or argument should receive high gains -- while the traditional RL models usually neglect such differences and pay equal attention on all instances. Moreover, our experiments also demonstrate that the proposed framework outperforms state-of-the-art methods, without explicit feature engineering.