Accurate drone detection is strongly desired in drone collision avoidance, drone defense and autonomous Unmanned Aerial Vehicle (UAV) self-landing. With the recent emergence of the Vision Transformer (ViT), this critical task is reassessed in this paper using a UAV dataset composed of 1359 drone photos. We construct various CNN and ViT-based models, demonstrating that for single-drone detection, a basic ViT can achieve performance 4.6 times more robust than our best CNN-based transfer learning models. By implementing the state-of-the-art You Only Look Once (YOLO v7, 200 epochs) and the experimental ViT-based You Only Look At One Sequence (YOLOS, 20 epochs) in multi-drone detection, we attain impressive 98% and 96% mAP values, respectively. We find that ViT outperforms CNN at the same epoch, but also requires more training data, computational power, and sophisticated, performance-oriented designs to fully surpass the capabilities of cutting-edge CNN detectors. We summarize the distinct characteristics of ViT and CNN models to aid future researchers in developing more efficient deep learning models.
The estimation of origin-destination (OD) matrices is a crucial aspect of Intelligent Transport Systems (ITS). It involves adjusting an initial OD matrix by regressing the current observations like traffic counts of road sections (e.g., using least squares). However, the OD estimation problem lacks sufficient constraints and is mathematically underdetermined. To alleviate this problem, some researchers incorporate a prior OD matrix as a target in the regression to provide more structural constraints. However, this approach is highly dependent on the existing prior matrix, which may be outdated. Others add structural constraints through sensor data, such as vehicle trajectory and speed, which can reflect more current structural constraints in real-time. Our proposed method integrates deep learning and numerical optimization algorithms to infer matrix structure and guide numerical optimization. This approach combines the advantages of both deep learning and numerical optimization algorithms. The neural network(NN) learns to infer structural constraints from probe traffic flows, eliminating dependence on prior information and providing real-time performance. Additionally, due to the generalization capability of NN, this method is economical in engineering. We conducted tests to demonstrate the good generalization performance of our method on a large-scale synthetic dataset. Subsequently, we verified the stability of our method on real traffic data. Our experiments provided confirmation of the benefits of combining NN and numerical optimization.
Can Large Language Models (LLMs) simulate human behavior in complex environments? LLMs have recently been shown to exhibit advanced reasoning skills but much of NLP evaluation still relies on static benchmarks. Answering this requires evaluation environments that probe strategic reasoning in competitive, dynamic scenarios that involve long-term planning. We introduce AucArena, a novel simulation environment for evaluating LLMs within auctions, a setting chosen for being highly unpredictable and involving many skills related to resource and risk management, while also being easy to evaluate. We conduct several controlled simulations using state-of-the-art LLMs as bidding agents. We find that through simple prompting, LLMs do indeed demonstrate many of the skills needed for effectively engaging in auctions (e.g., managing budget, adhering to long-term goals and priorities), skills that we find can be sharpened by explicitly encouraging models to be adaptive and observe strategies in past auctions. These results are significant as they show the potential of using LLM agents to model intricate social dynamics, especially in competitive settings. However, we also observe considerable variability in the capabilities of individual LLMs. Notably, even our most advanced models (GPT-4) are occasionally surpassed by heuristic baselines and human agents, highlighting the potential for further improvements in the design of LLM agents and the important role that our simulation environment can play in further testing and refining agent architectures.
Mobile devices often distribute measurements from physical sensors to multiple applications using software multiplexing. On Android devices, the highest requested sampling frequency is returned to all applications, even if others request measurements at lower frequencies. In this paper, we comprehensively demonstrate that this design choice exposes practically exploitable side-channels using frequency-key shifting. By carefully modulating sensor sampling frequencies in software, we show how unprivileged malicious applications can construct reliable spectral covert channels that bypass existing security mechanisms. Additionally, we present a novel variant that allows an unprivileged malicious application to profile other active, sensor-enabled applications at a coarse-grained level. Both methods do not impose any special assumptions beyond accessing standard mobile services available to developers. As such, our work reports side-channel vulnerabilities that exploit subtle yet insecure design choices in Android sensor stacks.
Proprietary Large Language Models (LLMs), such as ChatGPT, have garnered significant attention due to their exceptional capabilities in handling a diverse range of tasks. Recent studies demonstrate that open-sourced smaller foundational models, such as 7B-size LLaMA, can also display remarkable proficiency in tackling diverse tasks when fine-tuned using instruction-driven data. In this work, we investigate a practical problem setting where the primary focus is on one or a few particular tasks rather than general-purpose instruction following, and explore whether LLMs can be beneficial and further improved for such targeted scenarios. We choose the writing-assistant scenario as the testbed, which includes seven writing tasks. We collect training data for these tasks, reframe them in an instruction-following format, and subsequently refine the LLM, specifically LLaMA, via instruction tuning. Experimental results show that fine-tuning LLaMA on writing instruction data significantly improves its ability on writing tasks. We also conduct more experiments and analyses to offer insights for future work on effectively fine-tuning LLaMA for specific scenarios. Finally, we initiate a discussion regarding the necessity of employing LLMs for only one targeted task, taking into account the efforts required for tuning and the resources consumed during deployment.
Large Language Models (LLMs) have been garnering significant attention of AI researchers, especially following the widespread popularity of ChatGPT. However, due to LLMs' intricate architecture and vast parameters, several concerns and challenges regarding their quality assurance require to be addressed. In this paper, a fine-tuned GPT-based sentiment analysis model is first constructed and studied as the reference in AI quality analysis. Then, the quality analysis related to data adequacy is implemented, including employing the content-based approach to generate reasonable adversarial review comments as the wrongly-annotated data, and developing surprise adequacy (SA)-based techniques to detect these abnormal data. Experiments based on Amazon.com review data and a fine-tuned GPT model were implemented. Results were thoroughly discussed from the perspective of AI quality assurance to present the quality analysis of an LLM model on generated adversarial textual data and the effectiveness of using SA on anomaly detection in data quality assurance.
Cameras and LiDARs are both important sensors for autonomous driving, playing critical roles for 3D object detection. Camera-LiDAR Fusion has been a prevalent solution for robust and accurate autonomous driving perception. In contrast to the vast majority of existing arts that focus on how to improve the performance of 3D target detection through cross-modal schemes, deep learning algorithms, and training tricks, we devote attention to the impact of sensor configurations on the performance of learning-based methods. To achieve this, we propose a unified information-theoretic surrogate metric for camera and LiDAR evaluation based on the proposed sensor perception model. We also design an accelerated high-quality framework for data acquisition, model training, and performance evaluation that functions with the CARLA simulator. To show the correlation between detection performance and our surrogate metrics, We conduct experiments using several camera-LiDAR placements and parameters inspired by self-driving companies and research institutions. Extensive experimental results of representative algorithms on NuScenes dataset validate the effectiveness of our surrogate metric, demonstrating that sensor configurations significantly impact point-cloud-image fusion based detection models, which contribute up to 30% discrepancy in terms of average precision.
We consider stochastic approximations of sampling algorithms, such as Stochastic Gradient Langevin Dynamics (SGLD) and the Random Batch Method (RBM) for Interacting Particle Dynamcs (IPD). We observe that the noise introduced by the stochastic approximation is nearly Gaussian due to the Central Limit Theorem (CLT) while the driving Brownian motion is exactly Gaussian. We harness this structure to absorb the stochastic approximation error inside the diffusion process, and obtain improved convergence guarantees for these algorithms. For SGLD, we prove the first stable convergence rate in KL divergence without requiring uniform warm start, assuming the target density satisfies a Log-Sobolev Inequality. Our result implies superior first-order oracle complexity compared to prior works, under significantly milder assumptions. We also prove the first guarantees for SGLD under even weaker conditions such as H\"{o}lder smoothness and Poincare Inequality, thus bridging the gap between the state-of-the-art guarantees for LMC and SGLD. Our analysis motivates a new algorithm called covariance correction, which corrects for the additional noise introduced by the stochastic approximation by rescaling the strength of the diffusion. Finally, we apply our techniques to analyze RBM, and significantly improve upon the guarantees in prior works (such as removing exponential dependence on horizon), under minimal assumptions.
Reconstructing natural speech from neural activity is vital for enabling direct communication via brain-computer interfaces. Previous efforts have explored the conversion of neural recordings into speech using complex deep neural network (DNN) models trained on extensive neural recording data, which is resource-intensive under regular clinical constraints. However, achieving satisfactory performance in reconstructing speech from limited-scale neural recordings has been challenging, mainly due to the complexity of speech representations and the neural data constraints. To overcome these challenges, we propose a novel transfer learning framework for neural-driven speech reconstruction, called Neural2Speech, which consists of two distinct training phases. First, a speech autoencoder is pre-trained on readily available speech corpora to decode speech waveforms from the encoded speech representations. Second, a lightweight adaptor is trained on the small-scale neural recordings to align the neural activity and the speech representation for decoding. Remarkably, our proposed Neural2Speech demonstrates the feasibility of neural-driven speech reconstruction even with only 20 minutes of intracranial data, which significantly outperforms existing baseline methods in terms of speech fidelity and intelligibility.
Large Language Models (LLMs), such as ChatGPT, have achieved impressive milestones in natural language processing (NLP). Despite their impressive performance, the models are known to pose important risks. As these models are deployed in real-world applications, a systematic understanding of different risks posed by these models on tasks such as natural language inference (NLI), is much needed. In this paper, we define and formalize two distinct types of risk: decision risk and composite risk. We also propose a risk-centric evaluation framework, and four novel metrics, for assessing LLMs on these risks in both in-domain and out-of-domain settings. Finally, we propose a risk-adjusted calibration method called DwD for helping LLMs minimize these risks in an overall NLI architecture. Detailed experiments, using four NLI benchmarks, three baselines and two LLMs, including ChatGPT, show both the practical utility of the evaluation framework, and the efficacy of DwD in reducing decision and composite risk. For instance, when using DwD, an underlying LLM is able to address an extra 20.1% of low-risk inference tasks (but which the LLM erroneously deems high-risk without risk adjustment) and skip a further 19.8% of high-risk tasks, which would have been answered incorrectly.
Within the rapidly developing Internet of Things (IoT), numerous and diverse physical devices, Edge devices, Cloud infrastructure, and their quality of service requirements (QoS), need to be represented within a unified specification in order to enable rapid IoT application development, monitoring, and dynamic reconfiguration. But heterogeneities among different configuration knowledge representation models pose limitations for acquisition, discovery and curation of configuration knowledge for coordinated IoT applications. This paper proposes a unified data model to represent IoT resource configuration knowledge artifacts. It also proposes IoT-CANE (Context-Aware recommendatioN systEm) to facilitate incremental knowledge acquisition and declarative context driven knowledge recommendation.