Contouring is an indispensable step in Radiotherapy (RT) treatment planning. However, today's contouring software is constrained to only work with a 2D display, which is less intuitive and requires high task loads. Virtual Reality (VR) has shown great potential in various specialties of healthcare and health sciences education due to the unique advantages of intuitive and natural interactions in immersive spaces. VR-based radiation oncology integration has also been advocated as a target healthcare application, allowing providers to directly interact with 3D medical structures. We present VRContour and investigate how to effectively bring contouring for radiation oncology into VR. Through an autobiographical iterative design, we defined three design spaces focused on contouring in VR with the support of a tracked tablet and VR stylus, and investigating dimensionality for information consumption and input (either 2D or 2D + 3D). Through a within-subject study (n = 8), we found that visualizations of 3D medical structures significantly increase precision, and reduce mental load, frustration, as well as overall contouring effort. Participants also agreed with the benefits of using such metaphors for learning purposes.
The proliferation of radical online communities and their violent offshoots has sparked great societal concern. However, the current practice of banning such communities from mainstream platforms has unintended consequences: (I) the further radicalization of their members in fringe platforms where they migrate; and (ii) the spillover of harmful content from fringe back onto mainstream platforms. Here, in a large observational study on two banned subreddits, r/The\_Donald and r/fatpeoplehate, we examine how factors associated with the RECRO radicalization framework relate to users' migration decisions. Specifically, we quantify how these factors affect users' decisions to post on fringe platforms and, for those who do, whether they continue posting on the mainstream platform. Our results show that individual-level factors, those relating to the behavior of users, are associated with the decision to post on the fringe platform. Whereas social-level factors, users' connection with the radical community, only affect the propensity to be coactive on both platforms. Overall, our findings pave the way for evidence-based moderation policies, as the decisions to migrate and remain coactive amplify unintended consequences of community bans.
Motion planning and control in autonomous car racing are one of the most challenging and safety-critical tasks due to high speed and dynamism. The lower-level control nodes are expected to be highly optimized due to resource constraints of onboard embedded processing units, although there are strict latency requirements. Some of these guarantees can be provided at the application level, such as using ROS2's Real-Time executors. However, the performance can be far from satisfactory as many modern control algorithms (such as Model Predictive Control) rely on solving complicated online optimization problems at each iteration. In this paper, we present a simple yet effective multi-threading technique to optimize the throughput of online-control algorithms for resource-constrained autonomous racing platforms. We achieve this by maintaining a systematic pool of worker threads solving the optimization problem in parallel which can improve the system performance by reducing latency between control input commands. We further demonstrate the effectiveness of our method using the Model Predictive Contouring Control (MPCC) algorithm running on Nvidia's Xavier AGX platform.
We propose a multivariate extension of the Lorenz curve based on multivariate rearrangements of optimal transport theory. We define a vector Lorenz map as the integral of the vector quantile map associated to a multivariate resource allocation. Each component of the Lorenz map is the cumulative share of each resource, as in the traditional univariate case. The pointwise ordering of such Lorenz maps defines a new multivariate majorization order. We define a multi-attribute Gini index and complete ordering based on the Lorenz map. We formulate income egalitarianism and show that the class of egalitarian allocations is maximal with respect to our inequality ordering over a large class of allocations. We propose the level sets of an Inverse Lorenz Function as a practical tool to visualize and compare inequality in two dimensions, and apply it to income-wealth inequality in the United States between 1989 and 2019.
Non-additive measures, also known as fuzzy measures, capacities, and monotonic games, are increasingly used in different fields. Applications have been built within computer science and artificial intelligence related to e.g. decision making, image processing, machine learning for both classification, and regression. Tools for measure identification have been built. In short, as non-additive measures are more general than additive ones (i.e., than probabilities), they have better modeling capabilities allowing to model situations and problems that cannot be modeled by the latter. See e.g. the application of non-additive measures and the Choquet integral to model both Ellsberg paradox and Allais paradox. Because of that, there is an increasing need to analyze non-additive measures. The need for distances and similarities to compare them is no exception. Some work has been done for defining $f$-divergence for them. In this work we tackle the problem of defining the optimal transport problem for non-additive measures. Distances for pairs of probability distributions based on the optimal transport are extremely used in practical applications, and they are being studied extensively for their mathematical properties. We consider that it is necessary to provide appropriate definitions with a similar flavour, and that generalize the standard ones, for non-additive measures. We provide definitions based on the M\"obius transform, but also based on the $(\max, +)$-transform that we consider that has some advantages. We will discuss in this paper the problems that arise to define the transport problem for non-additive measures, and discuss ways to solve them. In this paper we provide the definitions of the optimal transport problem, and prove some properties.
Vehicle re-identification (Re-ID) is a critical component of the autonomous driving perception system, and research in this area has accelerated in recent years. However, there is yet no perfect solution to the vehicle re-identification issue associated with the car's surround-view camera system. Our analysis identifies two significant issues in the aforementioned scenario: i) It is difficult to identify the same vehicle in many picture frames due to the unique construction of the fisheye camera. ii) The appearance of the same vehicle when seen via the surround vision system's several cameras is rather different. To overcome these issues, we suggest an integrative vehicle Re-ID solution method. On the one hand, we provide a technique for determining the consistency of the tracking box drift with respect to the target. On the other hand, we combine a Re-ID network based on the attention mechanism with spatial limitations to increase performance in situations involving multiple cameras. Finally, our approach combines state-of-the-art accuracy with real-time performance. We will soon make the source code and annotated fisheye dataset available.
Mixtures of regression are a powerful class of models for regression learning with respect to a highly uncertain and heterogeneous response variable of interest. In addition to being a rich predictive model for the response given some covariates, the parameters in this model class provide useful information about the heterogeneity in the data population, which is represented by the conditional distributions for the response given the covariates associated with a number of distinct but latent subpopulations. In this paper, we investigate conditions of strong identifiability, rates of convergence for conditional density and parameter estimation, and the Bayesian posterior contraction behavior arising in finite mixture of regression models, under exact-fitted and over-fitted settings and when the number of components is unknown. This theory is applicable to common choices of link functions and families of conditional distributions employed by practitioners. We provide simulation studies and data illustrations, which shed some light on the parameter learning behavior found in several popular regression mixture models reported in the literature.
Denoising diffusion probabilistic models are a promising new class of generative models that mark a milestone in high-quality image generation. This paper showcases their ability to sequentially generate video, surpassing prior methods in perceptual and probabilistic forecasting metrics. We propose an autoregressive, end-to-end optimized video diffusion model inspired by recent advances in neural video compression. The model successively generates future frames by correcting a deterministic next-frame prediction using a stochastic residual generated by an inverse diffusion process. We compare this approach against five baselines on four datasets involving natural and simulation-based videos. We find significant improvements in terms of perceptual quality for all datasets. Furthermore, by introducing a scalable version of the Continuous Ranked Probability Score (CRPS) applicable to video, we show that our model also outperforms existing approaches in their probabilistic frame forecasting ability.
The application of autonomous UAVs to infrastructure inspection tasks provides benefits in terms of operation time reduction, safety, and cost-effectiveness. This paper presents trajectory planning for three-dimensional autonomous multi-UAV volume coverage and visual inspection of infrastructure based on the Heat Equation Driven Area Coverage (HEDAC) algorithm. The method generates trajectories using a potential field and implements distance fields to prevent collisions and to determine UAVs' camera orientation. It successfully achieves coverage during the visual inspection of complex structures such as a wind turbine and a bridge, outperforming a state-of-the-art method by allowing more surface area to be inspected under the same conditions. The presented trajectory planning method offers flexibility in various setup parameters and is applicable to real-world inspection tasks. Conclusively, the proposed methodology could potentially be applied to different autonomous UAV tasks, or even utilized as a UAV motion control method if its computational efficiency is improved.
Feature lines are important geometric cues in characterizing the structure of a CAD model. Despite great progress in both explicit reconstruction and implicit reconstruction, it remains a challenging task to reconstruct a polygonal surface equipped with feature lines, especially when the input point cloud is noisy and lacks faithful normal vectors. In this paper, we develop a multistage algorithm, named RFEPS, to address this challenge. The key steps include (1)denoising the point cloud based on the assumption of local planarity, (2)identifying the feature-line zone by optimization of discrete optimal transport, (3)augmenting the point set so that sufficiently many additional points are generated on potential geometry edges, and (4) generating a polygonal surface that interpolates the augmented point set based on restricted power diagram. We demonstrate through extensive experiments that RFEPS, benefiting from the edge-point augmentation and the feature-preserving explicit reconstruction, outperforms state-of-the-art methods in terms of the reconstruction quality, especially in terms of the ability to reconstruct missing feature lines.
Object locating in virtual reality (VR) has been widely used in many VR applications, such as virtual assembly, virtual repair, virtual remote coaching. However, when there are a large number of objects in the virtual environment(VE), the user cannot locate the target object efficiently and comfortably. In this paper, we propose a label guidance based object locating method for locating the target object efficiently in VR. Firstly, we introduce the label guidance based object locating pipeline to improve the efficiency of the object locating. It arranges the labels of all objects on the same screen, lets the user select the target labels first, and then uses the flying labels to guide the user to the target object. Then we summarize five principles for constructing the label layout for object locating and propose a two-level hierarchical sorted and orientated label layout based on the five principles for the user to select the candidate labels efficiently and comfortably. After that, we propose the view and gaze based label guidance method for guiding the user to locate the target object based on the selected candidate labels.It generates specific flying trajectories for candidate labels, updates the flying speed of candidate labels, keeps valid candidate labels , and removes the invalid candidate labels in real time during object locating with the guidance of the candidate labels. Compared with the traditional method, the user study results show that our method significantly improves efficiency and reduces task load for object locating.