亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present an optimal gradient method for smooth strongly convex optimization. The method is optimal in the sense that its worst-case bound on the distance to an optimal point exactly matches the lower bound on the oracle complexity for the class of problems, meaning that no black-box first-order method can have a better worst-case guarantee without further assumptions on the class of problems at hand. In addition, we provide a constructive recipe for obtaining the algorithmic parameters of the method and illustrate that it can be used for deriving methods for other optimality criteria as well.

相關內容

We present a principled approach for designing stochastic Newton methods for solving finite sum optimization problems. Our approach has two steps. First, we rewrite the stationarity conditions as a system of nonlinear equations that associates each data point to a new row. Second, we apply a subsampled Newton Raphson method to solve this system of nonlinear equations. By design, methods developed using our approach are incremental, in that they require only a single data point per iteration. Using our approach, we develop a new Stochastic Average Newton (SAN) method, which is incremental and cheap to implement when solving regularized generalized linear models. We show through extensive numerical experiments that SAN requires no knowledge about the problem, neither parameter tuning, while remaining competitive as compared to classical variance reduced gradient methods, such as SAG and SVRG.

We introduce a binary, relaxed gradient, trust-region method for optimizing pulse sequences for single flux quanta (SFQ) control of a quantum computer. The pulse sequences are optimized with the goal of realizing unitary gate transformations. Each pulse has a fixed amplitude and duration. We model this process as an binary optimal control problem, constrained by Schr\"{o}dinger's equation, where the binary variables indicate whether each pulse is on or off. We introduce a first-order trust-region method, which takes advantage of a relaxed gradient to determine an optimal pulse sequence that minimizes the gate infidelity, while also suppressing leakage to higher energy levels. The proposed algorithm has a computational complexity of ${\cal O}(p\log(p)$, where $p$ is the number of pulses in the sequence. We present numerical results for the H and X gates, where the optimized pulse sequences give gate fidelity's better than $99.9\%$, in $\approx 25$ trust-region iterations.

Meta-learning can successfully acquire useful inductive biases from data. Yet, its generalization properties to unseen learning tasks are poorly understood. Particularly if the number of meta-training tasks is small, this raises concerns about overfitting. We provide a theoretical analysis using the PAC-Bayesian framework and derive novel generalization bounds for meta-learning. Using these bounds, we develop a class of PAC-optimal meta-learning algorithms with performance guarantees and a principled meta-level regularization. Unlike previous PAC-Bayesian meta-learners, our method results in a standard stochastic optimization problem which can be solved efficiently and scales well. When instantiating our PAC-optimal hyper-posterior (PACOH) with Gaussian processes and Bayesian Neural Networks as base learners, the resulting methods yield state-of-the-art performance, both in terms of predictive accuracy and the quality of uncertainty estimates. Thanks to their principled treatment of uncertainty, our meta-learners can also be successfully employed for sequential decision problems.

Communication compression techniques are of growing interests for solving the decentralized optimization problem under limited communication, where the global objective is to minimize the average of local cost functions over a multi-agent network using only local computation and peer-to-peer communication. In this paper, we first propose a novel compressed gradient tracking algorithm (C-GT) that combines gradient tracking technique with communication compression. In particular, C-GT is compatible with a general class of compression operators that unifies both unbiased and biased compressors. We show that C-GT inherits the advantages of gradient tracking-based algorithms and achieves linear convergence rate for strongly convex and smooth objective functions. In the second part of this paper, we propose an error feedback based compressed gradient tracking algorithm (EF-C-GT) to further improve the algorithm efficiency for biased compression operators. Numerical examples complement the theoretical findings and demonstrate the efficiency and flexibility of the proposed algorithms.

This paper investigates the transmission power control in over-the-air federated edge learning (Air-FEEL) system. Different from conventional power control designs (e.g., to minimize the individual mean squared error (MSE) of the over-the-air aggregation at each round), we consider a new power control design aiming at directly maximizing the convergence speed. Towards this end, we first analyze the convergence behavior of Air-FEEL (in terms of the optimality gap) subject to aggregation errors at different communication rounds. It is revealed that if the aggregation estimates are unbiased, then the training algorithm would converge exactly to the optimal point with mild conditions; while if they are biased, then the algorithm would converge with an error floor determined by the accumulated estimate bias over communication rounds. Next, building upon the convergence results, we optimize the power control to directly minimize the derived optimality gaps under both biased and unbiased aggregations, subject to a set of average and maximum power constraints at individual edge devices. We transform both problems into convex forms, and obtain their structured optimal solutions, both appearing in a form of regularized channel inversion, by using the Lagrangian duality method. Finally, numerical results show that the proposed power control policies achieve significantly faster convergence for Air-FEEL, as compared with benchmark policies with fixed power transmission or conventional MSE minimization.

In this paper, we introduce the tamed stochastic gradient descent method (TSGD) for optimization problems. Inspired by the tamed Euler scheme, which is a commonly used method within the context of stochastic differential equations, TSGD is an explicit scheme that exhibits stability properties similar to those of implicit schemes. As its computational cost is essentially equivalent to that of the well-known stochastic gradient descent method (SGD), it constitutes a very competitive alternative to such methods. We rigorously prove (optimal) sub-linear convergence of the scheme for strongly convex objective functions on an abstract Hilbert space. The analysis only requires very mild step size restrictions, which illustrates the good stability properties. The analysis is based on a priori estimates more frequently encountered in a time integration context than in optimization, and this alternative approach provides a different perspective also on the convergence of SGD. Finally, we demonstrate the usability of the scheme on a problem arising in a context of supervised learning.

Sparse linear regression is a fundamental problem in high-dimensional statistics, but strikingly little is known about how to efficiently solve it without restrictive conditions on the design matrix. We consider the (correlated) random design setting, where the covariates are independently drawn from a multivariate Gaussian $N(0,\Sigma)$ with $\Sigma : n \times n$, and seek estimators $\hat{w}$ minimizing $(\hat{w}-w^*)^T\Sigma(\hat{w}-w^*)$, where $w^*$ is the $k$-sparse ground truth. Information theoretically, one can achieve strong error bounds with $O(k \log n)$ samples for arbitrary $\Sigma$ and $w^*$; however, no efficient algorithms are known to match these guarantees even with $o(n)$ samples, without further assumptions on $\Sigma$ or $w^*$. As far as hardness, computational lower bounds are only known with worst-case design matrices. Random-design instances are known which are hard for the Lasso, but these instances can generally be solved by Lasso after a simple change-of-basis (i.e. preconditioning). In this work, we give upper and lower bounds clarifying the power of preconditioning in sparse linear regression. First, we show that the preconditioned Lasso can solve a large class of sparse linear regression problems nearly optimally: it succeeds whenever the dependency structure of the covariates, in the sense of the Markov property, has low treewidth -- even if $\Sigma$ is highly ill-conditioned. Second, we construct (for the first time) random-design instances which are provably hard for an optimally preconditioned Lasso. In fact, we complete our treewidth classification by proving that for any treewidth-$t$ graph, there exists a Gaussian Markov Random Field on this graph such that the preconditioned Lasso, with any choice of preconditioner, requires $\Omega(t^{1/20})$ samples to recover $O(\log n)$-sparse signals when covariates are drawn from this model.

Stochastic Approximation (SA) is a popular approach for solving fixed-point equations where the information is corrupted by noise. In this paper, we consider an SA involving a contraction mapping with respect to an arbitrary norm, and show its finite-sample error bounds while using different stepsizes. The idea is to construct a smooth Lyapunov function using the generalized Moreau envelope, and show that the iterates of SA have negative drift with respect to that Lyapunov function. Our result is applicable in Reinforcement Learning (RL). In particular, we use it to establish the first-known convergence rate of the V-trace algorithm for off-policy TD-learning. Moreover, we also use it to study TD-learning in the on-policy setting, and recover the existing state-of-the-art results for $Q$-learning. Importantly, our construction results in only a logarithmic dependence of the convergence bound on the size of the state-space.

We show that for the problem of testing if a matrix $A \in F^{n \times n}$ has rank at most $d$, or requires changing an $\epsilon$-fraction of entries to have rank at most $d$, there is a non-adaptive query algorithm making $\widetilde{O}(d^2/\epsilon)$ queries. Our algorithm works for any field $F$. This improves upon the previous $O(d^2/\epsilon^2)$ bound (SODA'03), and bypasses an $\Omega(d^2/\epsilon^2)$ lower bound of (KDD'14) which holds if the algorithm is required to read a submatrix. Our algorithm is the first such algorithm which does not read a submatrix, and instead reads a carefully selected non-adaptive pattern of entries in rows and columns of $A$. We complement our algorithm with a matching query complexity lower bound for non-adaptive testers over any field. We also give tight bounds of $\widetilde{\Theta}(d^2)$ queries in the sensing model for which query access comes in the form of $\langle X_i, A\rangle:=tr(X_i^\top A)$; perhaps surprisingly these bounds do not depend on $\epsilon$. We next develop a novel property testing framework for testing numerical properties of a real-valued matrix $A$ more generally, which includes the stable rank, Schatten-$p$ norms, and SVD entropy. Specifically, we propose a bounded entry model, where $A$ is required to have entries bounded by $1$ in absolute value. We give upper and lower bounds for a wide range of problems in this model, and discuss connections to the sensing model above.

We develop an approach to risk minimization and stochastic optimization that provides a convex surrogate for variance, allowing near-optimal and computationally efficient trading between approximation and estimation error. Our approach builds off of techniques for distributionally robust optimization and Owen's empirical likelihood, and we provide a number of finite-sample and asymptotic results characterizing the theoretical performance of the estimator. In particular, we show that our procedure comes with certificates of optimality, achieving (in some scenarios) faster rates of convergence than empirical risk minimization by virtue of automatically balancing bias and variance. We give corroborating empirical evidence showing that in practice, the estimator indeed trades between variance and absolute performance on a training sample, improving out-of-sample (test) performance over standard empirical risk minimization for a number of classification problems.

北京阿比特科技有限公司