亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The current research standards in robotics demand general approaches to robots' controllers development. In the assistive robotics domain, the human-machine interaction plays a substantial role. Especially, the humans generate intents that affect robot control system. In the article an approach is presented for creating control systems for assistive robots, which reacts to users' intents delivered by voice commands, buttons, or an operator console. The whole approach was applied to the real system consisting of customised TIAGo robot and additional hardware components. The exemplary experiments performed on the platform illustrate the motivation for diversification of human-machine interfaces in assistive robots.

相關內容

Certain wheeled mobile robots e.g., electric wheelchairs, can operate through indirect joystick controls from users. Correct steering angle becomes essential when the user should determine the vehicle direction and velocity, in particular for differential wheeled vehicles since the vehicle velocity and direction are controlled with only two actuating wheels. This problem gets more challenging when complex curves should be realized by the user. A novel assistive controller with safety constraints is needed to address these problems. Also, the classic control methods mostly require the desired states beforehand which completely contradicts human's spontaneous decisions on the desired location to go. In this work, we develop a novel assistive control strategy based on differential geometry relying on only joystick inputs and vehicle states where the controller does not require any desired states. We begin with explaining the vehicle kinematics and our designed Darboux frame kinematics on a contact point of a virtual wheel and plane. Next, the geometric controller using the Darboux frame kinematics is designed for having smooth trajectories under certain safety constraints. We experiment our approach with different participants and evaluate its performance in various routes.

Traditional industrial systems, e.g., power plants, water treatment plants, etc., were built to operate highly isolated and controlled capacity. Recently, Industrial Control Systems (ICSs) have been exposed to the Internet for ease of access and adaptation to advanced technologies. However, it creates security vulnerabilities. Attackers often exploit these vulnerabilities to launch an attack on ICSs. Towards this, threat hunting is performed to proactively monitor the security of ICS networks and protect them against threats that could make the systems malfunction. A threat hunter manually identifies threats and provides a hypothesis based on the available threat intelligence. In this paper, we motivate the gap in lacking research in the automation of threat hunting in ICS networks. We propose an automated extraction of threat intelligence and the generation and validation of a hypothesis. We present an automated threat hunting framework based on threat intelligence provided by the ICS MITRE ATT&CK framework to automate the tasks. Unlike the existing hunting solutions which are cloud-based, costly and prone to human errors, our solution is a central and open-source implemented using different open-source technologies, e.g., Elasticsearch, Conpot, Metasploit, Web Single Page Application (SPA), and a machine learning analyser. Our results demonstrate that the proposed threat hunting solution can identify the network's attacks and alert a threat hunter with a hypothesis generated based on the techniques, tactics, and procedures (TTPs) from ICS MITRE ATT&CK. Then, a machine learning classifier automatically predicts the future actions of the attack.

We present the design and implementation of a taskable reactive mobile manipulation system. In contrary to related work, we treat the arm and base degrees of freedom as a holistic structure which greatly improves the speed and fluidity of the resulting motion. At the core of this approach is a robust and reactive motion controller which can achieve a desired end-effector pose, while avoiding joint position and velocity limits, and ensuring the mobile manipulator is manoeuvrable throughout the trajectory. This can support sensor-based behaviours such as closed-loop visual grasping. As no planning is involved in our approach, the robot is never stationary thinking about what to do next. We show the versatility of our holistic motion controller by implementing a pick and place system using behaviour trees and demonstrate this task on a 9-degree-of-freedom mobile manipulator. Additionally, we provide an open-source implementation of our motion controller for both non-holonomic and omnidirectional mobile manipulators available at jhavl.github.io/holistic.

Recent protocols and metrics for training and evaluating autonomous robot navigation through crowds are inconsistent due to diversified definitions of "social behavior". This makes it difficult, if not impossible, to effectively compare published navigation algorithms. Furthermore, with the lack of a good evaluation protocol, resulting algorithms may fail to generalize, due to lack of diversity in training. To address these gaps, this paper facilitates a more comprehensive evaluation and objective comparison of crowd navigation algorithms by proposing a consistent set of metrics that accounts for both efficiency and social conformity, and a systematic protocol comprising multiple crowd navigation scenarios of varying complexity for evaluation. We tested four state-of-the-art algorithms under this protocol. Results revealed that some state-of-the-art algorithms have much challenge in generalizing, and using our protocol for training, we were able to improve the algorithm's performance. We demonstrate that the set of proposed metrics provides more insight and effectively differentiates the performance of these algorithms with respect to efficiency and social conformity.

The effective control of the COVID-19 pandemic is one the most challenging issues of nowadays. The design of optimal control policies is perplexed from a variety of social, political, economical and epidemiological factors. Here, based on epidemiological data reported in recent studies for the Italian region of Lombardy, which experienced one of the largest and most devastating outbreaks in Europe during the first wave of the pandemic, we address a probabilistic model predictive control (PMPC) approach for the modelling and the systematic study of what if scenarios of the social distancing in a retrospective analysis for the first wave of the pandemic in Lombardy. The performance of the proposed PMPC scheme was assessed based on simulations of a compartmental model that was developed to quantify the uncertainty in the level of the asymptomatic cases in the population, and the synergistic effect of social distancing in various activities, and public awareness campaign prompting people to adopt cautious behaviors to reduce the risk of disease transmission. The PMPC scheme takes into account the social mixing effect, i.e. the effect of the various activities in the potential transmission of the disease. The proposed approach demonstrates the utility of a PMPC approach in addressing COVID-19 transmission and implementing public relaxation policies.

Recently, neural networks have been widely used in e-commerce recommender systems, owing to the rapid development of deep learning. We formalize the recommender system as a sequential recommendation problem, intending to predict the next items that the user might be interacted with. Recent works usually give an overall embedding from a user's behavior sequence. However, a unified user embedding cannot reflect the user's multiple interests during a period. In this paper, we propose a novel controllable multi-interest framework for the sequential recommendation, called ComiRec. Our multi-interest module captures multiple interests from user behavior sequences, which can be exploited for retrieving candidate items from the large-scale item pool. These items are then fed into an aggregation module to obtain the overall recommendation. The aggregation module leverages a controllable factor to balance the recommendation accuracy and diversity. We conduct experiments for the sequential recommendation on two real-world datasets, Amazon and Taobao. Experimental results demonstrate that our framework achieves significant improvements over state-of-the-art models. Our framework has also been successfully deployed on the offline Alibaba distributed cloud platform.

There is a resurgent interest in developing intelligent open-domain dialog systems due to the availability of large amounts of conversational data and the recent progress on neural approaches to conversational AI. Unlike traditional task-oriented bots, an open-domain dialog system aims to establish long-term connections with users by satisfying the human need for communication, affection, and social belonging. This paper reviews the recent works on neural approaches that are devoted to addressing three challenges in developing such systems: semantics, consistency, and interactiveness. Semantics requires a dialog system to not only understand the content of the dialog but also identify user's social needs during the conversation. Consistency requires the system to demonstrate a consistent personality to win users trust and gain their long-term confidence. Interactiveness refers to the system's ability to generate interpersonal responses to achieve particular social goals such as entertainment, conforming, and task completion. The works we select to present here is based on our unique views and are by no means complete. Nevertheless, we hope that the discussion will inspire new research in developing more intelligent dialog systems.

This paper introduces a novel neural network-based reinforcement learning approach for robot gaze control. Our approach enables a robot to learn and to adapt its gaze control strategy for human-robot interaction neither with the use of external sensors nor with human supervision. The robot learns to focus its attention onto groups of people from its own audio-visual experiences, independently of the number of people, of their positions and of their physical appearances. In particular, we use a recurrent neural network architecture in combination with Q-learning to find an optimal action-selection policy; we pre-train the network using a simulated environment that mimics realistic scenarios that involve speaking/silent participants, thus avoiding the need of tedious sessions of a robot interacting with people. Our experimental evaluation suggests that the proposed method is robust against parameter estimation, i.e. the parameter values yielded by the method do not have a decisive impact on the performance. The best results are obtained when both audio and visual information is jointly used. Experiments with the Nao robot indicate that our framework is a step forward towards the autonomous learning of socially acceptable gaze behavior.

Keeping the dialogue state in dialogue systems is a notoriously difficult task. We introduce an ontology-based dialogue manage(OntoDM), a dialogue manager that keeps the state of the conversation, provides a basis for anaphora resolution and drives the conversation via domain ontologies. The banking and finance area promises great potential for disambiguating the context via a rich set of products and specificity of proper nouns, named entities and verbs. We used ontologies both as a knowledge base and a basis for the dialogue manager; the knowledge base component and dialogue manager components coalesce in a sense. Domain knowledge is used to track Entities of Interest, i.e. nodes (classes) of the ontology which happen to be products and services. In this way we also introduced conversation memory and attention in a sense. We finely blended linguistic methods, domain-driven keyword ranking and domain ontologies to create ways of domain-driven conversation. Proposed framework is used in our in-house German language banking and finance chatbots. General challenges of German language processing and finance-banking domain chatbot language models and lexicons are also introduced. This work is still in progress, hence no success metrics have been introduced yet.

Many recommendation algorithms rely on user data to generate recommendations. However, these recommendations also affect the data obtained from future users. This work aims to understand the effects of this dynamic interaction. We propose a simple model where users with heterogeneous preferences arrive over time. Based on this model, we prove that naive estimators, i.e. those which ignore this feedback loop, are not consistent. We show that consistent estimators are efficient in the presence of myopic agents. Our results are validated using extensive simulations.

北京阿比特科技有限公司