亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The potential of realistic and useful synthetic data is significant. However, current evaluation methods for synthetic tabular data generation predominantly focus on downstream task usefulness, often neglecting the importance of statistical properties. This oversight becomes particularly prominent in low sample scenarios, accompanied by a swift deterioration of these statistical measures. In this paper, we address this issue by conducting an evaluation of three state-of-the-art synthetic tabular data generators based on their marginal distribution, column-pair correlation, joint distribution and downstream task utility performance across high to low sample regimes. The popular CTGAN model shows strong utility, but underperforms in low sample settings in terms of utility. To overcome this limitation, we propose MargCTGAN that adds feature matching of de-correlated marginals, which results in a consistent improvement in downstream utility as well as statistical properties of the synthetic data.

相關內容

Most real-world classification tasks suffer from label noise to some extent. Such noise in the data adversely affects the generalization error of learned models and complicates the evaluation of noise-handling methods, as their performance cannot be accurately measured without clean labels. In label noise research, typically either noisy or incomplex simulated data are accepted as a baseline, into which additional noise with known properties is injected. In this paper, we propose SYNLABEL, a framework that aims to improve upon the aforementioned methodologies. It allows for creating a noiseless dataset informed by real data, by either pre-specifying or learning a function and defining it as the ground truth function from which labels are generated. Furthermore, by resampling a number of values for selected features in the function domain, evaluating the function and aggregating the resulting labels, each data point can be assigned a soft label or label distribution. Such distributions allow for direct injection and quantification of label noise. The generated datasets serve as a clean baseline of adjustable complexity into which different types of noise may be introduced. We illustrate how the framework can be applied, how it enables quantification of label noise and how it improves over existing methodologies.

The logistic regression model is one of the most powerful statistical methods for the analysis of binary data. The logistic regression allows to use a set of covariates to explain the binary responses. The mixture of logistic regression models is used to fit heterogeneous populations through an unsupervised learning approach. The multicollinearity problem is one of the most common problems in logistics and a mixture of logistic regressions where the covariates are highly correlated. This problem results in unreliable maximum likelihood estimates for the regression coefficients. This research developed shrinkage methods to deal with the multicollinearity in a mixture of logistic regression models. These shrinkage methods include ridge and Liu-type estimators. Through extensive numerical studies, we show that the developed methods provide more reliable results in estimating the coefficients of the mixture. Finally, we applied the shrinkage methods to analyze the bone disorder status of women aged 50 and older.

The large-scale simulation of dynamical systems is critical in numerous scientific and engineering disciplines. However, traditional numerical solvers are limited by the choice of step sizes when estimating integration, resulting in a trade-off between accuracy and computational efficiency. To address this challenge, we introduce a deep learning-based corrector called Neural Vector (NeurVec), which can compensate for integration errors and enable larger time step sizes in simulations. Our extensive experiments on a variety of complex dynamical system benchmarks demonstrate that NeurVec exhibits remarkable generalization capability on a continuous phase space, even when trained using limited and discrete data. NeurVec significantly accelerates traditional solvers, achieving speeds tens to hundreds of times faster while maintaining high levels of accuracy and stability. Moreover, NeurVec's simple-yet-effective design, combined with its ease of implementation, has the potential to establish a new paradigm for fast-solving differential equations based on deep learning.

Many areas of machine learning and science involve large linear algebra problems, such as eigendecompositions, solving linear systems, computing matrix exponentials, and trace estimation. The matrices involved often have Kronecker, convolutional, block diagonal, sum, or product structure. In this paper, we propose a simple but general framework for large-scale linear algebra problems in machine learning, named CoLA (Compositional Linear Algebra). By combining a linear operator abstraction with compositional dispatch rules, CoLA automatically constructs memory and runtime efficient numerical algorithms. Moreover, CoLA provides memory efficient automatic differentiation, low precision computation, and GPU acceleration in both JAX and PyTorch, while also accommodating new objects, operations, and rules in downstream packages via multiple dispatch. CoLA can accelerate many algebraic operations, while making it easy to prototype matrix structures and algorithms, providing an appealing drop-in tool for virtually any computational effort that requires linear algebra. We showcase its efficacy across a broad range of applications, including partial differential equations, Gaussian processes, equivariant model construction, and unsupervised learning.

Real-world time-series datasets are often multivariate with complex dynamics. To capture this complexity, high capacity architectures like recurrent- or attention-based sequential deep learning models have become popular. However, recent work demonstrates that simple univariate linear models can outperform such deep learning models on several commonly used academic benchmarks. Extending them, in this paper, we investigate the capabilities of linear models for time-series forecasting and present Time-Series Mixer (TSMixer), a novel architecture designed by stacking multi-layer perceptrons (MLPs). TSMixer is based on mixing operations along both the time and feature dimensions to extract information efficiently. On popular academic benchmarks, the simple-to-implement TSMixer is comparable to specialized state-of-the-art models that leverage the inductive biases of specific benchmarks. On the challenging and large scale M5 benchmark, a real-world retail dataset, TSMixer demonstrates superior performance compared to the state-of-the-art alternatives. Our results underline the importance of efficiently utilizing cross-variate and auxiliary information for improving the performance of time series forecasting. We present various analyses to shed light into the capabilities of TSMixer. The design paradigms utilized in TSMixer are expected to open new horizons for deep learning-based time series forecasting. The implementation is available at //github.com/google-research/google-research/tree/master/tsmixer

Processing-in-memory (PIM) promises to alleviate the data movement bottleneck in modern computing systems. However, current real-world PIM systems have the inherent disadvantage that their hardware is more constrained than in conventional processors (CPU, GPU), due to the difficulty and cost of building processing elements near or inside the memory. As a result, general-purpose PIM architectures support fairly limited instruction sets and struggle to execute complex operations such as transcendental functions and other hard-to-calculate operations (e.g., square root). These operations are particularly important for some modern workloads, e.g., activation functions in machine learning applications. In order to provide support for transcendental (and other hard-to-calculate) functions in general-purpose PIM systems, we present \emph{TransPimLib}, a library that provides CORDIC-based and LUT-based methods for trigonometric functions, hyperbolic functions, exponentiation, logarithm, square root, etc. We develop an implementation of TransPimLib for the UPMEM PIM architecture and perform a thorough evaluation of TransPimLib's methods in terms of performance and accuracy, using microbenchmarks and three full workloads (Blackscholes, Sigmoid, Softmax). We open-source all our code and datasets at~\url{//github.com/CMU-SAFARI/transpimlib}.

Ensuring alignment, which refers to making models behave in accordance with human intentions [1,2], has become a critical task before deploying large language models (LLMs) in real-world applications. For instance, OpenAI devoted six months to iteratively aligning GPT-4 before its release [3]. However, a major challenge faced by practitioners is the lack of clear guidance on evaluating whether LLM outputs align with social norms, values, and regulations. This obstacle hinders systematic iteration and deployment of LLMs. To address this issue, this paper presents a comprehensive survey of key dimensions that are crucial to consider when assessing LLM trustworthiness. The survey covers seven major categories of LLM trustworthiness: reliability, safety, fairness, resistance to misuse, explainability and reasoning, adherence to social norms, and robustness. Each major category is further divided into several sub-categories, resulting in a total of 29 sub-categories. Additionally, a subset of 8 sub-categories is selected for further investigation, where corresponding measurement studies are designed and conducted on several widely-used LLMs. The measurement results indicate that, in general, more aligned models tend to perform better in terms of overall trustworthiness. However, the effectiveness of alignment varies across the different trustworthiness categories considered. This highlights the importance of conducting more fine-grained analyses, testing, and making continuous improvements on LLM alignment. By shedding light on these key dimensions of LLM trustworthiness, this paper aims to provide valuable insights and guidance to practitioners in the field. Understanding and addressing these concerns will be crucial in achieving reliable and ethically sound deployment of LLMs in various applications.

The emergence of large language models (LLMs) has substantially influenced natural language processing, demonstrating exceptional results across various tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in self-optimizing their decision-making. By introspectively examining trajectories, LLM refines its policy by generating succinct and valuable tips. Our method enhances the agent's performance in both few-shot and zero-shot learning situations by considering three essential scenarios: learning from the agent's past experiences, integrating expert demonstrations, and generalizing across diverse games. Importantly, we accomplish these improvements without fine-tuning the LLM parameters; rather, we adjust the prompt to generalize insights from the three aforementioned situations. Our framework not only supports but also emphasizes the advantage of employing LLM in in-contxt decision-making. Experiments involving over 100 games in TextWorld illustrate the superior performance of our approach.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

Visual dialogue is a challenging task that needs to extract implicit information from both visual (image) and textual (dialogue history) contexts. Classical approaches pay more attention to the integration of the current question, vision knowledge and text knowledge, despising the heterogeneous semantic gaps between the cross-modal information. In the meantime, the concatenation operation has become de-facto standard to the cross-modal information fusion, which has a limited ability in information retrieval. In this paper, we propose a novel Knowledge-Bridge Graph Network (KBGN) model by using graph to bridge the cross-modal semantic relations between vision and text knowledge in fine granularity, as well as retrieving required knowledge via an adaptive information selection mode. Moreover, the reasoning clues for visual dialogue can be clearly drawn from intra-modal entities and inter-modal bridges. Experimental results on VisDial v1.0 and VisDial-Q datasets demonstrate that our model outperforms exiting models with state-of-the-art results.

北京阿比特科技有限公司