亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Data silos create barriers in accessing and utilizing data dispersed over networks. Directly sharing data easily suffers from the long downloading time, the single point failure and the untraceable data usage. In this paper, we present Minerva, a peer-to-peer cross-cluster data query system based on InterPlanetary File System (IPFS). Minerva makes use of the distributed Hash table (DHT) lookup to pinpoint the locations that store content chunks. We theoretically model the DHT query delay and introduce the fat Merkle tree structure as well as the DHT caching to reduce it. We design the query plan for read and write operations on top of Apache Drill that enables the collaborative query with decentralized workers. We conduct comprehensive experiments on Minerva, and the results show that Minerva achieves up to $2.08 \times$ query performance acceleration compared to the original IPFS data query, and could complete data analysis queries on the Internet-like environments within an average latency of $0.615$ second. With collaborative query, Minerva could perform up to $1.39 \times$ performance acceleration than centralized query with raw data shipment.

相關內容

分布式(shi)哈希表技術(shu)(Distributed Hash Table)簡(jian)稱DHT,類似Tracker的(de)(de)(de)根據種子特(te)征碼返回種子信息的(de)(de)(de)網(wang)(wang)(wang)絡·是一(yi)(yi)(yi)種分布式(shi)存儲(chu)(chu)方(fang)法。在(zai)不需(xu)要(yao)服務(wu)器的(de)(de)(de)情(qing)況下(xia),每個(ge)客(ke)戶端負責一(yi)(yi)(yi)個(ge)小范圍的(de)(de)(de)路由,并負責存儲(chu)(chu)一(yi)(yi)(yi)小部(bu)分數據,從而實現(xian)整個(ge)DHT網(wang)(wang)(wang)絡的(de)(de)(de)尋址和存儲(chu)(chu)。新(xin)版(ban)BitComet允許同行連(lian)(lian)接DHT網(wang)(wang)(wang)絡和Tracker,也(ye)就是說在(zai)完全(quan)不連(lian)(lian)上[Tracker服務(wu)器的(de)(de)(de)情(qing)況下(xia),也(ye)可以很好的(de)(de)(de)下(xia)載,因為它(ta)可以在(zai)DHT網(wang)(wang)(wang)絡中(zhong)尋找下(xia)載同一(yi)(yi)(yi)文(wen)件的(de)(de)(de)其他(ta)用(yong)戶。BitComet的(de)(de)(de)DHT網(wang)(wang)(wang)絡協議和BitTorrent今年(nian)5月測試版(ban)的(de)(de)(de)協議完全(quan)兼容,也(ye)就是說可以連(lian)(lian)入一(yi)(yi)(yi)個(ge)同DHT網(wang)(wang)(wang)絡分享數據。

Recently, a large number of Low Earth Orbit (LEO) satellites have been launched and deployed successfully in space by commercial companies, such as SpaceX. Due to multimodal sensors equipped by the LEO satellites, they serve not only for communication but also for various machine learning applications, such as space modulation recognition, remote sensing image classification, etc. However, the ground station (GS) may be incapable of downloading such a large volume of raw sensing data for centralized model training due to the limited contact time with LEO satellites (e.g. 5 minutes). Therefore, federated learning (FL) has emerged as the promising solution to address this problem via on-device training. Unfortunately, to enable FL on LEO satellites, we still face three critical challenges that are i) heterogeneous computing and memory capabilities, ii) limited uplink rate, and iii) model staleness. To this end, we propose FedSN as a general FL framework to tackle the above challenges, and fully explore data diversity on LEO satellites. Specifically, we first present a novel sub-structure scheme to enable heterogeneous local model training considering different computing, memory, and communication constraints on LEO satellites. Additionally, we propose a pseudo-synchronous model aggregation strategy to dynamically schedule model aggregation for compensating model staleness. To further demonstrate the effectiveness of the FedSN, we evaluate it using space modulation recognition and remote sensing image classification tasks by leveraging the data from real-world satellite networks. Extensive experimental results demonstrate that FedSN framework achieves higher accuracy, lower computing, and communication overhead than the state-of-the-art benchmarks and the effectiveness of each components in FedSN.

Processing convolution layers remains a huge bottleneck for private deep convolutional neural network (CNN) inference for large datasets. To solve this issue, this paper presents a novel homomorphic convolution algorithm that provides speedup, communication cost, and storage saving. We first note that padded convolution provides the advantage of model storage saving, but it does not support channel packing, thereby increasing the amount of computation and communication. We address this limitation by proposing a novel plaintext multiplication algorithm using the Walsh-Hadamard matrix. Furthermore, we propose the optimization techniques to significantly reduce the latency of the proposed convolution by selecting the optimal encryption parameters and applying lazy reduction. It achieves 1.6-3.8x speedup and reduces the weight storage by 2000-8000x compared to the conventional convolution. When the proposed convolution is employed for CNNs like VGG-16, ResNet-20, and MobileNetV1 on ImageNet, it reduces the end-to-end latency by 1.3-2.6x, the memory usage by 2.1-7.9x and communication cost by 1.7-2.0x compared to conventional method.

The mixture proportions of pretraining data domains (e.g., Wikipedia, books, web text) greatly affect language model (LM) performance. In this paper, we propose Domain Reweighting with Minimax Optimization (DoReMi), which first trains a small proxy model using group distributionally robust optimization (Group DRO) over domains to produce domain weights (mixture proportions) without knowledge of downstream tasks. We then resample a dataset with these domain weights and train a larger, full-sized model. In our experiments, we use DoReMi on a 280M-parameter proxy model to set the domain weights for training an 8B-parameter model (30x larger) more efficiently. On The Pile, DoReMi improves perplexity across all domains, even when it downweights a domain. DoReMi improves average few-shot downstream accuracy by 6.5% points over a baseline model trained using The Pile's default domain weights and reaches the baseline accuracy with 2.6x fewer training steps. On the GLaM dataset, DoReMi, which has no knowledge of downstream tasks, even matches the performance of using domain weights tuned on downstream tasks.

Recommender systems are widely used in various online services, with embedding-based models being particularly popular due to their expressiveness in representing complex signals. However, these models often lack interpretability, making them less reliable and transparent for both users and developers. With the emergence of large language models (LLMs), we find that their capabilities in language expression, knowledge-aware reasoning, and instruction following are exceptionally powerful. Based on this, we propose a new model interpretation approach for recommender systems, by using LLMs as surrogate models and learn to mimic and comprehend target recommender models. Specifically, we introduce three alignment methods: behavior alignment, intention alignment, and hybrid alignment. Behavior alignment operates in the language space, representing user preferences and item information as text to learn the recommendation model's behavior; intention alignment works in the latent space of the recommendation model, using user and item representations to understand the model's behavior; hybrid alignment combines both language and latent spaces for alignment training. To demonstrate the effectiveness of our methods, we conduct evaluation from two perspectives: alignment effect, and explanation generation ability on three public datasets. Experimental results indicate that our approach effectively enables LLMs to comprehend the patterns of recommendation models and generate highly credible recommendation explanations.

Anonymity networks allow messaging with metadata privacy, providing better privacy than popular encrypted messaging applications. However, contacting a user on an anonymity network currently requires knowing their public key or similar high-entropy information, as these systems lack a privacy-preserving mechanism for contacting a user via a short, human-readable username. Previous research suggests that this is a barrier to widespread adoption. In this paper we propose Pudding, a novel private user discovery protocol that allows a user to be contacted on an anonymity network knowing only their email address. Our protocol hides contact relationships between users, prevents impersonation, and conceals which usernames are registered on the network. Pudding is Byzantine fault tolerant, remaining available and secure as long as less than one third of servers are crashed, unavailable, or malicious. It can be deployed on Loopix and Nym without changes to the underlying anonymity network protocol, and it supports mobile devices with intermittent network connectivity. We demonstrate the practicality of Pudding with a prototype using the Nym anonymity network. We also formally define the security and privacy goals of our protocol and conduct a thorough analysis to assess its compliance with these definitions.

Learning representations through self-supervision on unlabeled data has proven highly effective for understanding diverse images. However, remote sensing images often have complex and densely populated scenes with multiple land objects and no clear foreground objects. This intrinsic property generates high object density, resulting in false positive pairs or missing contextual information in self-supervised learning. To address these problems, we propose a context-enhanced masked image modeling method (CtxMIM), a simple yet efficient MIM-based self-supervised learning for remote sensing image understanding. CtxMIM formulates original image patches as a reconstructive template and employs a Siamese framework to operate on two sets of image patches. A context-enhanced generative branch is introduced to provide contextual information through context consistency constraints in the reconstruction. With the simple and elegant design, CtxMIM encourages the pre-training model to learn object-level or pixel-level features on a large-scale dataset without specific temporal or geographical constraints. Finally, extensive experiments show that features learned by CtxMIM outperform fully supervised and state-of-the-art self-supervised learning methods on various downstream tasks, including land cover classification, semantic segmentation, object detection, and instance segmentation. These results demonstrate that CtxMIM learns impressive remote sensing representations with high generalization and transferability. Code and data will be made public available.

A large number of real-world graphs or networks are inherently heterogeneous, involving a diversity of node types and relation types. Heterogeneous graph embedding is to embed rich structural and semantic information of a heterogeneous graph into low-dimensional node representations. Existing models usually define multiple metapaths in a heterogeneous graph to capture the composite relations and guide neighbor selection. However, these models either omit node content features, discard intermediate nodes along the metapath, or only consider one metapath. To address these three limitations, we propose a new model named Metapath Aggregated Graph Neural Network (MAGNN) to boost the final performance. Specifically, MAGNN employs three major components, i.e., the node content transformation to encapsulate input node attributes, the intra-metapath aggregation to incorporate intermediate semantic nodes, and the inter-metapath aggregation to combine messages from multiple metapaths. Extensive experiments on three real-world heterogeneous graph datasets for node classification, node clustering, and link prediction show that MAGNN achieves more accurate prediction results than state-of-the-art baselines.

Graph convolutional networks (GCNs) have recently become one of the most powerful tools for graph analytics tasks in numerous applications, ranging from social networks and natural language processing to bioinformatics and chemoinformatics, thanks to their ability to capture the complex relationships between concepts. At present, the vast majority of GCNs use a neighborhood aggregation framework to learn a continuous and compact vector, then performing a pooling operation to generalize graph embedding for the classification task. These approaches have two disadvantages in the graph classification task: (1)when only the largest sub-graph structure ($k$-hop neighbor) is used for neighborhood aggregation, a large amount of early-stage information is lost during the graph convolution step; (2) simple average/sum pooling or max pooling utilized, which loses the characteristics of each node and the topology between nodes. In this paper, we propose a novel framework called, dual attention graph convolutional networks (DAGCN) to address these problems. DAGCN automatically learns the importance of neighbors at different hops using a novel attention graph convolution layer, and then employs a second attention component, a self-attention pooling layer, to generalize the graph representation from the various aspects of a matrix graph embedding. The dual attention network is trained in an end-to-end manner for the graph classification task. We compare our model with state-of-the-art graph kernels and other deep learning methods. The experimental results show that our framework not only outperforms other baselines but also achieves a better rate of convergence.

Distant supervision can effectively label data for relation extraction, but suffers from the noise labeling problem. Recent works mainly perform soft bag-level noise reduction strategies to find the relatively better samples in a sentence bag, which is suboptimal compared with making a hard decision of false positive samples in sentence level. In this paper, we introduce an adversarial learning framework, which we named DSGAN, to learn a sentence-level true-positive generator. Inspired by Generative Adversarial Networks, we regard the positive samples generated by the generator as the negative samples to train the discriminator. The optimal generator is obtained until the discrimination ability of the discriminator has the greatest decline. We adopt the generator to filter distant supervision training dataset and redistribute the false positive instances into the negative set, in which way to provide a cleaned dataset for relation classification. The experimental results show that the proposed strategy significantly improves the performance of distant supervision relation extraction comparing to state-of-the-art systems.

We present Generative Adversarial Capsule Network (CapsuleGAN), a framework that uses capsule networks (CapsNets) instead of the standard convolutional neural networks (CNNs) as discriminators within the generative adversarial network (GAN) setting, while modeling image data. We provide guidelines for designing CapsNet discriminators and the updated GAN objective function, which incorporates the CapsNet margin loss, for training CapsuleGAN models. We show that CapsuleGAN outperforms convolutional-GAN at modeling image data distribution on the MNIST dataset of handwritten digits, evaluated on the generative adversarial metric and at semi-supervised image classification.

北京阿比特科技有限公司