We train graph neural networks on halo catalogues from Gadget N-body simulations to perform field-level likelihood-free inference of cosmological parameters. The catalogues contain $\lesssim$5,000 halos with masses $\gtrsim 10^{10}~h^{-1}M_\odot$ in a periodic volume of $(25~h^{-1}{\rm Mpc})^3$; every halo in the catalogue is characterized by several properties such as position, mass, velocity, concentration, and maximum circular velocity. Our models, built to be permutationally, translationally, and rotationally invariant, do not impose a minimum scale on which to extract information and are able to infer the values of $\Omega_{\rm m}$ and $\sigma_8$ with a mean relative error of $\sim6\%$, when using positions plus velocities and positions plus masses, respectively. More importantly, we find that our models are very robust: they can infer the value of $\Omega_{\rm m}$ and $\sigma_8$ when tested using halo catalogues from thousands of N-body simulations run with five different N-body codes: Abacus, CUBEP$^3$M, Enzo, PKDGrav3, and Ramses. Surprisingly, the model trained to infer $\Omega_{\rm m}$ also works when tested on thousands of state-of-the-art CAMELS hydrodynamic simulations run with four different codes and subgrid physics implementations. Using halo properties such as concentration and maximum circular velocity allow our models to extract more information, at the expense of breaking the robustness of the models. This may happen because the different N-body codes are not converged on the relevant scales corresponding to these parameters.
Recent work has improved language models (LMs) remarkably by equipping them with a non-parametric memory component. However, most existing approaches only introduce mem-ories at testing time or represent them using a separately trained encoder, resulting in suboptimal training of the language model. In this work, we present TRIME, a novel yet simple training approach designed for training LMs with memory augmentation. Our approach uses a training objective that directly takes in-batch examples as accessible memory. We also present new methods for memory construction and data batching, which are used for adapting to different sets of memories--local, long-term, and external memory--at testing time. We evaluate TRIME on multiple language modeling and machine translation benchmarks and show that it is able to achieve significant improvements across all the settings. Concretely, TRIME reduces the perplexity from 18.70 to 15.37 on WIKITEXT-103, by effectively leveraging a large memory set from the training corpus. Compared to standard LM training, TRIME adds negligible computational overhead and is compatible with different neural architectures, making it a versatile solution for training memory-augmented LMs.
The Smart Grid (SG) is a cornerstone of modern society, providing the energy required to sustain billions of lives and thousands of industries. Unfortunately, as one of the most critical infrastructures of our World, the SG is an attractive target for attackers. The problem is aggravated by the increasing adoption of digitalisation, which further increases the SG's exposure to cyberthreats. Successful exploitation of such exposure leads to entire countries being paralysed, which is an unacceptable -- but ultimately inescapable -- risk. This paper aims to mitigate this risk by elucidating the perspective of real practitioners on the cybersecurity of the SG. We interviewed 18 entities, operating in diverse countries in Europe and covering all domains of the SG -- from energy generation, to its delivery. Our analysis highlights a stark contrast between (a)research and practice, but also between (b) public and private entities. For instance: some threats appear to be much less dangerous than what is claimed in related papers; some technological paradigms have dubious utility for practitioners, but are actively promoted by literature; finally, practitioners may either under- or over-estimate their own cybersecurity capabilities. We derive four takeaways that enable future endeavours to improve the overall cybersecurity in the SG. We conjecture that most of the problems are due to an improper communication between researchers, practitioners and regulatory bodies -- which, despite sharing a common goal, tend to neglect the viewpoint of the other `spheres'.
Sequences with a low correlation have very important applications in communications, cryptography, and compressed sensing. In the literature, many efforts have been made to construct good sequences with various lengths where binary sequences attracts great attention. As a result, various constructions of good binary sequences have been proposed. However, most of the known constructions made use of the multiplicative cyclic group structure of finite field $\mathbb{F}_{p^n}$ for a prime $p$ and a positive integer $n$. In fact, all $p^n+1$ rational places including the place at infinity of the rational function field over $\mathbb{F}_{p^n}$ form a cyclic structure under an automorphism of order $p^n+1$. In this paper, we make use of this cyclic structure to provide an explicit construction of binary sequences with a low correlation of length $p^n+1$ via cyclotomic function fields over $\mathbb{F}_{p^n}$ for any odd prime $p$. Each family of binary sequences has size $p^n-2$ and its correlation is upper bounded by $4+\lfloor 2\cdot p^{n/2}\rfloor$. To the best of our knowledge, this is the first construction of binary sequences with a low correlation of length $p^n+1$ for odd prime $p$. Moreover, our sequences can be constructed explicitly and have competitive parameters.
This paper considers the problem of designating navigation goal locations for interactive mobile robots. We propose a point-and-click interface, implemented with an Augmented Reality (AR) headset. The cameras on the AR headset are used to detect natural pointing gestures performed by the user. The selected goal is visualized through the AR headset, allowing the users to adjust the goal location if desired. We conduct a user study in which participants set consecutive navigation goals for the robot using three different interfaces: AR Point & Click, Person Following and Tablet (birdeye map view). Results show that the proposed AR Point&Click interface improved the perceived accuracy, efficiency and reduced mental load compared to the baseline tablet interface, and it performed on-par to the Person Following method. These results show that the AR Point\&Click is a feasible interaction model for setting navigation goals.
Understanding the impact of the most effective policies or treatments on a response variable of interest is desirable in many empirical works in economics, statistics and other disciplines. Due to the widespread winner's curse phenomenon, conventional statistical inference assuming that the top policies are chosen independent of the random sample may lead to overly optimistic evaluations of the best policies. In recent years, given the increased availability of large datasets, such an issue can be further complicated when researchers include many covariates to estimate the policy or treatment effects in an attempt to control for potential confounders. In this manuscript, to simultaneously address the above-mentioned issues, we propose a resampling-based procedure that not only lifts the winner's curse in evaluating the best policies observed in a random sample, but also is robust to the presence of many covariates. The proposed inference procedure yields accurate point estimates and valid frequentist confidence intervals that achieve the exact nominal level as the sample size goes to infinity for multiple best policy effect sizes. We illustrate the finite-sample performance of our approach through Monte Carlo experiments and two empirical studies, evaluating the most effective policies in charitable giving and the most beneficial group of workers in the National Supported Work program.
Reinforcement learning has been demonstrated as a flexible and effective approach for learning a range of continuous control tasks, such as those used by robots to manipulate objects in their environment. But in robotics particularly, real-world rollouts are costly, and sample efficiency can be a major limiting factor when learning a new skill. In game environments, the use of world models has been shown to improve sample efficiency while still achieving good performance, especially when images or other rich observations are provided. In this project, we explore the use of a world model in a deformable robotic manipulation task, evaluating its effect on sample efficiency when learning to fold a cloth in simulation. We compare the use of RGB image observation with a feature space leveraging built-in structure (keypoints representing the cloth configuration), a common approach in robot skill learning, and compare the impact on task performance and learning efficiency with and without the world model. Our experiments showed that the usage of keypoints increased the performance of the best model on the task by 50%, and in general, the use of a learned or constructed reduced feature space improved task performance and sample efficiency. The use of a state transition predictor(MDN-RNN) in our world models did not have a notable effect on task performance.
This study presents a theoretical structure for the monocular pose estimation problem using the total least squares. The unit-vector line-of-sight observations of the features are extracted from the monocular camera images. First, the optimization framework is formulated for the pose estimation problem with observation vectors extracted from unit vectors from the camera center-of-projection, pointing towards the image features. The attitude and position solutions obtained via the derived optimization framework are proven to reach the Cram\'er-Rao lower bound under the small angle approximation of the attitude errors. Specifically, The Fisher Information Matrix and the Cram\'er-Rao bounds are evaluated and compared to the analytical derivations of the error-covariance expressions to rigorously prove the optimality of the estimates. The sensor data for the measurement model is provided through a series of vector observations, and two fully populated noise-covariance matrices are assumed for the body and reference observation data. The inverse of the former matrices appear in terms of a series of weight matrices in the cost function. The proposed solution is simulated in a Monte-Carlo framework with 10,000 samples to validate the error-covariance analysis.
In this paper, we investigate the Gaussian graphical model inference problem in a novel setting that we call erose measurements, referring to irregularly measured or observed data. For graphs, this results in different node pairs having vastly different sample sizes which frequently arises in data integration, genomics, neuroscience, and sensor networks. Existing works characterize the graph selection performance using the minimum pairwise sample size, which provides little insights for erosely measured data, and no existing inference method is applicable. We aim to fill in this gap by proposing the first inference method that characterizes the different uncertainty levels over the graph caused by the erose measurements, named GI-JOE (Graph Inference when Joint Observations are Erose). Specifically, we develop an edge-wise inference method and an affiliated FDR control procedure, where the variance of each edge depends on the sample sizes associated with corresponding neighbors. We prove statistical validity under erose measurements, thanks to careful localized edge-wise analysis and disentangling the dependencies across the graph. Finally, through simulation studies and a real neuroscience data example, we demonstrate the advantages of our inference methods for graph selection from erosely measured data.
This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.
Image segmentation is still an open problem especially when intensities of the interested objects are overlapped due to the presence of intensity inhomogeneity (also known as bias field). To segment images with intensity inhomogeneities, a bias correction embedded level set model is proposed where Inhomogeneities are Estimated by Orthogonal Primary Functions (IEOPF). In the proposed model, the smoothly varying bias is estimated by a linear combination of a given set of orthogonal primary functions. An inhomogeneous intensity clustering energy is then defined and membership functions of the clusters described by the level set function are introduced to rewrite the energy as a data term of the proposed model. Similar to popular level set methods, a regularization term and an arc length term are also included to regularize and smooth the level set function, respectively. The proposed model is then extended to multichannel and multiphase patterns to segment colourful images and images with multiple objects, respectively. It has been extensively tested on both synthetic and real images that are widely used in the literature and public BrainWeb and IBSR datasets. Experimental results and comparison with state-of-the-art methods demonstrate that advantages of the proposed model in terms of bias correction and segmentation accuracy.