With the robust uptick in the applications of Bayesian external data borrowing, eliciting a prior distribution with the proper amount of information becomes increasingly critical. The prior effective sample size (ESS) is an intuitive and efficient measure for this purpose. The majority of ESS definitions have been proposed in the context of borrowing control information. While many Bayesian models can be naturally extended to leveraging external information on the treatment effect scale, very little attention has been directed to computing the prior ESS in this setting. In this research, we bridge this methodological gap by extending the popular ELIR ESS definition. We lay out the general framework, and derive the prior ESS for various types of endpoints and treatment effect measures. The posterior distribution and the predictive consistency property of ESS are also examined. The methods are implemented in R programs available on GitHub: //github.com/squallteo/TrtEffESS.
Understanding the generalization properties of heavy-tailed stochastic optimization algorithms has attracted increasing attention over the past years. While illuminating interesting aspects of stochastic optimizers by using heavy-tailed stochastic differential equations as proxies, prior works either provided expected generalization bounds, or introduced non-computable information theoretic terms. Addressing these drawbacks, in this work, we prove high-probability generalization bounds for heavy-tailed SDEs which do not contain any nontrivial information theoretic terms. To achieve this goal, we develop new proof techniques based on estimating the entropy flows associated with the so-called fractional Fokker-Planck equation (a partial differential equation that governs the evolution of the distribution of the corresponding heavy-tailed SDE). In addition to obtaining high-probability bounds, we show that our bounds have a better dependence on the dimension of parameters as compared to prior art. Our results further identify a phase transition phenomenon, which suggests that heavy tails can be either beneficial or harmful depending on the problem structure. We support our theory with experiments conducted in a variety of settings.
We introduce a framework for solving a class of parabolic partial differential equations on triangle mesh surfaces, including the Hamilton-Jacobi equation and the Fokker-Planck equation. PDE in this class often have nonlinear or stiff terms that cannot be resolved with standard methods on curved triangle meshes. To address this challenge, we leverage a splitting integrator combined with a convex optimization step to solve these PDE. Our machinery can be used to compute entropic approximation of optimal transport distances on geometric domains, overcoming the numerical limitations of the state-of-the-art method. In addition, we demonstrate the versatility of our method on a number of linear and nonlinear PDE that appear in diffusion and front propagation tasks in geometry processing.
Learning the distribution of data on Riemannian manifolds is crucial for modeling data from non-Euclidean space, which is required by many applications in diverse scientific fields. Yet, existing generative models on manifolds suffer from expensive divergence computation or rely on approximations of heat kernel. These limitations restrict their applicability to simple geometries and hinder scalability to high dimensions. In this work, we introduce the Riemannian Diffusion Mixture, a principled framework for building a generative diffusion process on manifolds. Instead of following the denoising approach of previous diffusion models, we construct a diffusion process using a mixture of bridge processes derived on general manifolds without requiring heat kernel estimations. We develop a geometric understanding of the mixture process, deriving the drift as a weighted mean of tangent directions to the data points that guides the process toward the data distribution. We further propose a scalable training objective for learning the mixture process that readily applies to general manifolds. Our method achieves superior performance on diverse manifolds with dramatically reduced number of in-training simulation steps for general manifolds.
Functional data analysis (FDA) finds widespread application across various fields, due to data being recorded continuously over a time interval or at several discrete points. Since the data is not observed at every point but rather across a dense grid, smoothing techniques are often employed to convert the observed data into functions. In this work, we propose a novel Bayesian approach for selecting basis functions for smoothing one or multiple curves simultaneously. Our method differentiates from other Bayesian approaches in two key ways: (i) by accounting for correlated errors and (ii) by developing a variational EM algorithm instead of a Gibbs sampler. Simulation studies demonstrate that our method effectively identifies the true underlying structure of the data across various scenarios and it is applicable to different types of functional data. Our variational EM algorithm not only recovers the basis coefficients and the correct set of basis functions but also estimates the existing within-curve correlation. When applied to the motorcycle dataset, our method demonstrates comparable, and in some cases superior, performance in terms of adjusted $R^2$ compared to other techniques such as regression splines, Bayesian LASSO and LASSO. Additionally, when assuming independence among observations within a curve, our method, utilizing only a variational Bayes algorithm, is in the order of thousands faster than a Gibbs sampler on average. Our proposed method is implemented in R and codes are available at //github.com/acarolcruz/VB-Bases-Selection.
Classifying public tenders is a useful task for both companies that are invited to participate and for inspecting fraudulent activities. To facilitate the task for both participants and public administrations, the European Union presented a common taxonomy (Common Procurement Vocabulary, CPV) which is mandatory for tenders of certain importance; however, the contracts in which a CPV label is mandatory are the minority compared to all the Public Administrations activities. Classifying over a real-world taxonomy introduces some difficulties that can not be ignored. First of all, some fine-grained classes have an insufficient (if any) number of observations in the training set, while other classes are far more frequent (even thousands of times) than the average. To overcome those difficulties, we present a zero-shot approach, based on a pre-trained language model that relies only on label description and respects the label taxonomy. To train our proposed model, we used industrial data, which comes from contrattipubblici.org, a service by SpazioDati s.r.l. that collects public contracts stipulated in Italy in the last 25 years. Results show that the proposed model achieves better performance in classifying low-frequent classes compared to three different baselines, and is also able to predict never-seen classes.
Label noise, commonly found in real-world datasets, has a detrimental impact on a model's generalization. To effectively detect incorrectly labeled instances, previous works have mostly relied on distinguishable training signals, such as training loss, as indicators to differentiate between clean and noisy labels. However, they have limitations in that the training signals incompletely reveal the model's behavior and are not effectively generalized to various noise types, resulting in limited detection accuracy. In this paper, we propose DynaCor framework that distinguishes incorrectly labeled instances from correctly labeled ones based on the dynamics of the training signals. To cope with the absence of supervision for clean and noisy labels, DynaCor first introduces a label corruption strategy that augments the original dataset with intentionally corrupted labels, enabling indirect simulation of the model's behavior on noisy labels. Then, DynaCor learns to identify clean and noisy instances by inducing two clearly distinguishable clusters from the latent representations of training dynamics. Our comprehensive experiments show that DynaCor outperforms the state-of-the-art competitors and shows strong robustness to various noise types and noise rates.
We derive new bounds for the condition number of kernel matrices, which we then use to enhance existing non-asymptotic test error bounds for kernel ridgeless regression (KRR) in the over-parameterized regime for a fixed input dimension. For kernels with polynomial spectral decay, we recover the bound from previous work; for exponential decay, our bound is non-trivial and novel. Our contribution is two-fold: (i) we rigorously prove the phenomena of tempered overfitting and catastrophic overfitting under the sub-Gaussian design assumption, closing an existing gap in the literature; (ii) we identify that the independence of the features plays an important role in guaranteeing tempered overfitting, raising concerns about approximating KRR generalization using the Gaussian design assumption in previous literature.
Estimators of doubly robust functionals typically rely on estimating two complex nuisance functions, such as the propensity score and conditional outcome mean for the average treatment effect functional. We consider the problem of how to estimate nuisance functions to obtain optimal rates of convergence for a doubly robust nonparametric functional that has witnessed applications across the causal inference and conditional independence testing literature. For several plug-in type estimators and a one-step type estimator, we illustrate the interplay between different tuning parameter choices for the nuisance function estimators and sample splitting strategies on the optimal rate of estimating the functional of interest. For each of these estimators and each sample splitting strategy, we show the necessity to undersmooth the nuisance function estimators under low regularity conditions to obtain optimal rates of convergence for the functional of interest. By performing suitable nuisance function tuning and sample splitting strategies, we show that some of these estimators can achieve minimax rates of convergence in all H\"older smoothness classes of the nuisance functions.
The success of AI models relies on the availability of large, diverse, and high-quality datasets, which can be challenging to obtain due to data scarcity, privacy concerns, and high costs. Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns. This paper provides an overview of synthetic data research, discussing its applications, challenges, and future directions. We present empirical evidence from prior art to demonstrate its effectiveness and highlight the importance of ensuring its factuality, fidelity, and unbiasedness. We emphasize the need for responsible use of synthetic data to build more powerful, inclusive, and trustworthy language models.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.