Invariant finite-difference schemes for the one-dimensional shallow water equations in the presence of a magnetic field for various bottom topographies are constructed. Based on the results of the group classification recently carried out by the authors, finite-difference analogues of the conservation laws of the original differential model are obtained. Some typical problems are considered numerically, for which a comparison is made between the cases of a magnetic field presence and when it is absent (the standard shallow water model). The invariance of difference schemes in Lagrangian coordinates and the energy preservation on the obtained numerical solutions are also discussed.
The paper generalizes Lazarus Fuchs' theorem on the solutions of complex ordinary linear differential equations with regular singularities to the case of ground fields of arbitrary characteristic, giving a precise description of the shape of each solution. This completes partial investigations started by Taira Honda and Bernard Dwork. The main features are the introduction of a differential ring $\mathcal{R}$ in infinitely many variables mimicking the role of the (complex) iterated logarithms, and the proof that adding these "logarithms" already provides sufficiently many primitives so as to solve any differential equation with regular singularity in $\mathcal{R}$. A key step in the proof is the reduction of the involved differential operator to an Euler operator, its normal form, to solve Euler equations in $\mathcal{R}$ and to lift their (monomial) solutions to solutions of the original equation. The first (and already very striking) example of this outset is the exponential function $\exp_p$ in positive characteristic, solution of $y' = y$. We prove that it necessarily involves all variables and we construct its explicit (and quite mysterious) power series expansion. Additionally, relations of our results to the Grothendieck-Katz $p$-curvature conjecture and related conjectures will be discussed.
High-dimensional fractional reaction-diffusion equations have numerous applications in the fields of biology, chemistry, and physics, and exhibit a range of rich phenomena. While classical algorithms have an exponential complexity in the spatial dimension, a quantum computer can produce a quantum state that encodes the solution with only polynomial complexity, provided that suitable input access is available. In this work, we investigate efficient quantum algorithms for linear and nonlinear fractional reaction-diffusion equations with periodic boundary conditions. For linear equations, we analyze and compare the complexity of various methods, including the second-order Trotter formula, time-marching method, and truncated Dyson series method. We also present a novel algorithm that combines the linear combination of Hamiltonian simulation technique with the interaction picture formalism, resulting in optimal scaling in the spatial dimension. For nonlinear equations, we employ the Carleman linearization method and propose a block-encoding version that is appropriate for the dense matrices that arise from the spatial discretization of fractional reaction-diffusion equations.
The formulation of Bayesian inverse problems involves choosing prior distributions; choices that seem equally reasonable may lead to significantly different conclusions. We develop a computational approach to better understand the impact of the hyperparameters defining the prior on the posterior statistics of the quantities of interest. Our approach relies on global sensitivity analysis (GSA) of Bayesian inverse problems with respect to the hyperparameters defining the prior. This, however, is a challenging problem--a naive double loop sampling approach would require running a prohibitive number of Markov chain Monte Carlo (MCMC) sampling procedures. The present work takes a foundational step in making such a sensitivity analysis practical through (i) a judicious combination of efficient surrogate models and (ii) a tailored importance sampling method. In particular, we can perform accurate GSA of posterior prediction statistics with respect to prior hyperparameters without having to repeat MCMC runs. We demonstrate the effectiveness of the approach on a simple Bayesian linear inverse problem and a nonlinear inverse problem governed by an epidemiological model
We introduce a novel structure-preserving method in order to approximate the compressible ideal Magnetohydrodynamics (MHD) equations. This technique addresses the MHD equations using a non-divergence formulation, where the contributions of the magnetic field to the momentum and total mechanical energy are treated as source terms. Our approach uses the Marchuk-Strang splitting technique and involves three distinct components: a compressible Euler solver, a source-system solver, and an update procedure for the total mechanical energy. The scheme allows for significant freedom on the choice of Euler's equation solver, while the magnetic field is discretized using a curl-conforming finite element space, yielding exact preservation of the involution constraints. We prove that the method preserves invariant domain properties, including positivity of density, positivity of internal energy, and the minimum principle of the specific entropy. If the scheme used to solve Euler's equation conserves total energy, then the resulting MHD scheme can be proven to preserve total energy. Similarly, if the scheme used to solve Euler's equation is entropy-stable, then the resulting MHD scheme is entropy stable as well. In our approach, the CFL condition does not depend on magnetosonic wave-speeds, but only on the usual maximum wave speed from Euler's system. To validate the effectiveness of our method, we solve a variety of ideal MHD problems, showing that the method is capable of delivering high-order accuracy in space for smooth problems, while also offering unconditional robustness in the shock hydrodynamics regime as well.
This work presents a comparative study to numerically compute impulse approximate controls for parabolic equations with various boundary conditions. Theoretical controllability results have been recently investigated using a logarithmic convexity estimate at a single time based on a Carleman commutator approach. We propose a numerical algorithm for computing the impulse controls with minimal $L^2$-norms by adapting a penalized Hilbert Uniqueness Method (HUM) combined with a Conjugate Gradient (CG) method. We consider static boundary conditions (Dirichlet and Neumann) and dynamic boundary conditions. Some numerical experiments based on our developed algorithm are given to validate and compare the theoretical impulse controllability results.
This work studies time-dependent electromagnetic scattering from obstacles whose interaction with the wave is fully determined by a nonlinear boundary condition. In particular, the boundary condition studied in this work enforces a power law type relation between the electric and magnetic field along the boundary. Based on time-dependent jump conditions of classical boundary operators, we derive a nonlinear system of time-dependent boundary integral equations that determines the tangential traces of the scattered electric and magnetic fields. These fields can subsequently be computed at arbitrary points in the exterior domain by evaluating a time-dependent representation formula. Fully discrete schemes are obtained by discretising the nonlinear system of boundary integral equations with Runge--Kutta based convolution quadrature in time and Raviart--Thomas boundary elements in space. Error bounds with explicitly stated convergence rates are proven, under the assumption of sufficient regularity of the exact solution. The error analysis is conducted through novel techniques based on time-discrete transmission problems and the use of a new discrete partial integration inequality. Numerical experiments illustrate the use of the proposed method and provide empirical convergence rates.
We present a new high-order accurate spectral element solution to the two-dimensional scalar Poisson equation subject to a general Robin boundary condition. The solution is based on a simplified version of the shifted boundary method employing a continuous arbitrary order $hp$-Galerkin spectral element method as the numerical discretization procedure. The simplification relies on a polynomial correction to avoid explicitly evaluating high-order partial derivatives from the Taylor series expansion, which traditionally have been used within the shifted boundary method. In this setting, we apply an extrapolation and novel interpolation approach to project the basis functions from the true domain onto the approximate surrogate domain. The resulting solution provides a method that naturally incorporates curved geometrical features of the domain, overcomes complex and cumbersome mesh generation, and avoids problems with small-cut-cells. Dirichlet, Neumann, and general Robin boundary conditions are enforced weakly through: i) a generalized Nitsche's method and ii) a generalized Aubin's method. For this, a consistent asymptotic preserving formulation of the embedded Robin formulations is presented. We present several numerical experiments and analysis of the algorithmic properties of the different weak formulations. With this, we include convergence studies under polynomial, $p$, increase of the basis functions, mesh, $h$, refinement, and matrix conditioning to highlight the spectral and algebraic convergence features, respectively. This is done to assess the influence of errors across variational formulations, polynomial order, mesh size, and mappings between the true and surrogate boundaries.
For problems of time-harmonic scattering by rational polygonal obstacles, embedding formulae express the far-field pattern induced by any incident plane wave in terms of the far-field patterns for a relatively small (frequency-independent) set of canonical incident angles. Although these remarkable formulae are exact in theory, here we demonstrate that: (i) they are highly sensitive to numerical errors in practice, and; (ii) direct calculation of the coefficients in these formulae may be impossible for particular sets of canonical incident angles, even in exact arithmetic. Only by overcoming these practical issues can embedding formulae provide a highly efficient approach to computing the far-field pattern induced by a large number of incident angles. Here we propose solutions for problems (i) and (ii), backed up by theory and numerical experiments. Problem (i) is solved using techniques from computational complex analysis: we reformulate the embedding formula as a complex contour integral and prove that this is much less sensitive to numerical errors. In practice, this contour integral can be efficiently evaluated by residue calculus. Problem (ii) is addressed using techniques from numerical linear algebra: we oversample, considering more canonical incident angles than are necessary, thus expanding the space of valid coefficients vectors. The coefficients vectors can then be selected using either a least squares approach or column subset selection.
Despite the growing interest in parallel-in-time methods as an approach to accelerate numerical simulations in atmospheric modelling, improving their stability and convergence remains a substantial challenge for their application to operational models. In this work, we study the temporal parallelization of the shallow water equations on the rotating sphere combined with time-stepping schemes commonly used in atmospheric modelling due to their stability properties, namely an Eulerian implicit-explicit (IMEX) method and a semi-Lagrangian semi-implicit method (SL-SI-SETTLS). The main goal is to investigate the performance of parallel-in-time methods, namely Parareal and Multigrid Reduction in Time (MGRIT), when these well-established schemes are used on the coarse discretization levels and provide insights on how they can be improved for better performance. We begin by performing an analytical stability study of Parareal and MGRIT applied to a linearized ordinary differential equation depending on the choice of a coarse scheme. Next, we perform numerical simulations of two standard tests to evaluate the stability, convergence and speedup provided by the parallel-in-time methods compared to a fine reference solution computed serially. We also conduct a detailed investigation on the influence of artificial viscosity and hyperviscosity approaches, applied on the coarse discretization levels, on the performance of the temporal parallelization. Both the analytical stability study and the numerical simulations indicate a poorer stability behaviour when SL-SI-SETTLS is used on the coarse levels, compared to the IMEX scheme. With the IMEX scheme, a better trade-off between convergence, stability and speedup compared to serial simulations can be obtained under proper parameters and artificial viscosity choices, opening the perspective of the potential competitiveness for realistic models.
The moment of entropy equation for vector-BGK model results in the entropy equation for macroscopic model. However, this is usually not the case in numerical methods because the current literature consists only of entropy conserving/stable schemes for macroscopic model (to the best of our knowledge). In this paper, we attempt to fill this gap by developing an entropy conserving scheme for vector-kinetic model, and we show that the moment of this results in an entropy conserving scheme for macroscopic model. With the numerical viscosity of entropy conserving scheme as reference, the entropy stable scheme for vector-kinetic model is developed in the spirit of [33]. We show that the moment of this scheme results in an entropy stable scheme for macroscopic model. The schemes are validated on several benchmark test problems for scalar and shallow water equations, and conservation/stability of both kinetic and macroscopic entropies are presented.