亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The moment of entropy equation for vector-BGK model results in the entropy equation for macroscopic model. However, this is usually not the case in numerical methods because the current literature consists only of entropy conserving/stable schemes for macroscopic model (to the best of our knowledge). In this paper, we attempt to fill this gap by developing an entropy conserving scheme for vector-kinetic model, and we show that the moment of this results in an entropy conserving scheme for macroscopic model. With the numerical viscosity of entropy conserving scheme as reference, the entropy stable scheme for vector-kinetic model is developed in the spirit of [33]. We show that the moment of this scheme results in an entropy stable scheme for macroscopic model. The schemes are validated on several benchmark test problems for scalar and shallow water equations, and conservation/stability of both kinetic and macroscopic entropies are presented.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 優化器 · Networking · Cognition · MoDELS ·
2023 年 12 月 13 日

Cognitive Radio Network (CRN) provides effective capabilities for resource allocation with the valuable spectrum resources in the network. It provides the effective allocation of resources to the unlicensed users or Secondary Users (SUs) to access the spectrum those are unused by the licensed users or Primary Users (Pus). This paper develops an Optimal Relay Selection scheme with the spectrum-sharing scheme in CRN. The proposed Cross-Layer Spider Swarm Shifting is implemented in CRN for the optimal relay selection with Spider Swarm Optimization (SSO). The shortest path is estimated with the data shifting model for the data transmission path in the CRN. This study examines a cognitive relay network (CRN) with interference restrictions imposed by a mobile end user (MU). Half-duplex communication is used in the proposed system model between a single primary user (PU) and a single secondary user (SU). Between the SU source and SU destination, an amplify and forward (AF) relaying mechanism is also used. While other nodes (SU Source, SU relays, and PU) are supposed to be immobile in this scenario, the mobile end user (SU destination) is assumed to travel at high vehicle speeds. The suggested method achieves variety by placing a selection combiner at the SU destination and dynamically selecting the optimal relay for transmission based on the greatest signal-to-noise (SNR) ratio. The performance of the proposed Cross-Layer Spider Swarm Shifting model is compared with the Spectrum Sharing Optimization with QoS Guarantee (SSO-QG). The comparative analysis expressed that the proposed Cross-Layer Spider Swarm Shifting model delay is reduced by 15% compared with SSO-QG. Additionally, the proposed Cross-Layer Spider Swarm Shifting exhibits the improved network performance of ~25% higher throughput compared with SSO-QG.

Stochastic differential equation (SDE in short) solvers find numerous applications across various fields. However, in practical simulations, we usually resort to using Ito-Taylor series-based methods like the Euler-Maruyama method. These methods often suffer from the limitation of fixed time scales and recalculations for different Brownian motions, which lead to computational inefficiency, especially in generative and sampling models. To address these issues, we propose a novel approach: learning a mapping between the solution of SDE and corresponding Brownian motion. This mapping exhibits versatility across different scales and requires minimal paths for training. Specifically, we employ the DeepONet method to learn a nonlinear mapping. And we also assess the efficiency of this method through simulations conducted at varying time scales. Additionally, we evaluate its generalization performance to verify its good versatility in different scenarios.

This work is concerned with solving high-dimensional Fokker-Planck equations with the novel perspective that solving the PDE can be reduced to independent instances of density estimation tasks based on the trajectories sampled from its associated particle dynamics. With this approach, one sidesteps error accumulation occurring from integrating the PDE dynamics on a parameterized function class. This approach significantly simplifies deployment, as one is free of the challenges of implementing loss terms based on the differential equation. In particular, we introduce a novel class of high-dimensional functions called the functional hierarchical tensor (FHT). The FHT ansatz leverages a hierarchical low-rank structure, offering the advantage of linearly scalable runtime and memory complexity relative to the dimension count. We introduce a sketching-based technique that performs density estimation over particles simulated from the particle dynamics associated with the equation, thereby obtaining a representation of the Fokker-Planck solution in terms of our ansatz. We apply the proposed approach successfully to three challenging time-dependent Ginzburg-Landau models with hundreds of variables.

Integro-differential equations, analyzed in this work, comprise an important class of models of continuum media with nonlocal interactions. Examples include peridynamics, population and opinion dynamics, the spread of disease models, and nonlocal diffusion, to name a few. They also arise naturally as a continuum limit of interacting dynamical systems on networks. Many real-world networks, including neuronal, epidemiological, and information networks, exhibit self-similarity, which translates into self-similarity of the spatial domain of the continuum limit. For a class of evolution equations with nonlocal interactions on self-similar domains, we construct a discontinuous Galerkin method and develop a framework for studying its convergence. Specifically, for the model at hand, we identify a natural scale of function spaces, which respects self-similarity of the spatial domain, and estimate the rate of convergence under minimal assumptions on the regularity of the interaction kernel. The analytical results are illustrated by numerical experiments on a model problem.

Numerical analysis for the stochastic Stokes equations is still challenging even though it has been well done for the corresponding deterministic equations. In particular, the pre-existing error estimates of finite element methods for the stochastic Stokes equations { in the $L^\infty(0, T; L^2(\Omega; L^2))$ norm} all suffer from the order reduction with respect to the spatial discretizations. The best convergence result obtained for these fully discrete schemes is only half-order in time and first-order in space, which is not optimal in space in the traditional sense. The objective of this article is to establish strong convergence of $O(\tau^{1/2}+ h^2)$ in the $L^\infty(0, T; L^2(\Omega; L^2))$ norm for approximating the velocity, and strong convergence of $O(\tau^{1/2}+ h)$ in the $L^{\infty}(0, T;L^2(\Omega;L^2))$ norm for approximating the time integral of pressure, where $\tau$ and $h$ denote the temporal step size and spatial mesh size, respectively. The error estimates are of optimal order for the spatial discretization considered in this article (with MINI element), and consistent with the numerical experiments. The analysis is based on the fully discrete Stokes semigroup technique and the corresponding new estimates.

In this work we consider the two dimensional instationary Navier-Stokes equations with homogeneous Dirichlet/no-slip boundary conditions. We show error estimates for the fully discrete problem, where a discontinuous Galerkin method in time and inf-sup stable finite elements in space are used. Recently, best approximation type error estimates for the Stokes problem in the $L^\infty(I;L^2(\Omega))$, $L^2(I;H^1(\Omega))$ and $L^2(I;L^2(\Omega))$ norms have been shown. The main result of the present work extends the error estimate in the $L^\infty(I;L^2(\Omega))$ norm to the Navier-Stokes equations, by pursuing an error splitting approach and an appropriate duality argument. In order to discuss the stability of solutions to the discrete primal and dual equations, a specially tailored discrete Gronwall lemma is presented. The techniques developed towards showing the $L^\infty(I;L^2(\Omega))$ error estimate, also allow us to show best approximation type error estimates in the $L^2(I;H^1(\Omega))$ and $L^2(I;L^2(\Omega))$ norms, which complement this work.

Functional magnetic resonance imaging analytical workflows are highly flexible with no definite consensus on how to choose a pipeline. While methods have been developed to explore this analytical space, there is still a lack of understanding of the relationships between the different pipelines. We use community detection algorithms to explore the pipeline space and assess its stability across different contexts. We show that there are subsets of pipelines that give similar results, especially those sharing specific parameters (e.g. number of motion regressors, software packages, etc.), with relative stability across groups of participants. By visualizing the differences between these subsets, we describe the effect of pipeline parameters and derive general relationships in the analytical space.

We study the iterative methods for large moment systems derived from the linearized Boltzmann equation. By Fourier analysis, it is shown that the direct application of the block symmetric Gauss-Seidel (BSGS) method has slower convergence for smaller Knudsen numbers. Better convergence rates for dense flows are then achieved by coupling the BSGS method with the micro-macro decomposition, which treats the moment equations as a coupled system with a microscopic part and a macroscopic part. Since the macroscopic part contains only a small number of equations, it can be solved accurately during the iteration with a relatively small computational cost, which accelerates the overall iteration. The method is further generalized to the multiscale decomposition which splits the moment system into many subsystems with different orders of magnitude. Both one- and two-dimensional numerical tests are carried out to examine the performances of these methods. Possible issues regarding the efficiency and convergence are discussed in the conclusion.

Normal modal logics extending the logic K4.3 of linear transitive frames are known to lack the Craig interpolation property, except some logics of bounded depth such as S5. We turn this `negative' fact into a research question and pursue a non-uniform approach to Craig interpolation by investigating the following interpolant existence problem: decide whether there exists a Craig interpolant between two given formulas in any fixed logic above K4.3. Using a bisimulation-based characterisation of interpolant existence for descriptive frames, we show that this problem is decidable and coNP-complete for all finitely axiomatisable normal modal logics containing K4.3. It is thus not harder than entailment in these logics, which is in sharp contrast to other recent non-uniform interpolation results. We also extend our approach to Priorean temporal logics (with both past and future modalities) over the standard time flows-the integers, rationals, reals, and finite strict linear orders-none of which is blessed with the Craig interpolation property.

We discuss avoidance of sure loss and coherence results for semicopulas and standardized functions, i.e., for grounded, 1-increasing functions with value $1$ at $(1,1,\ldots, 1)$. We characterize the existence of a $k$-increasing $n$-variate function $C$ fulfilling $A\leq C\leq B$ for standardized $n$-variate functions $A,B$ and discuss the method for constructing this function. Our proofs also include procedures for extending functions on some countably infinite mesh to functions on the unit box. We provide a characterization when $A$ respectively $B$ coincides with the pointwise infimum respectively supremum of the set of all $k$-increasing $n$-variate functions $C$ fulfilling $A\leq C\leq B$.

北京阿比特科技有限公司