亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Cognitive Radio Network (CRN) provides effective capabilities for resource allocation with the valuable spectrum resources in the network. It provides the effective allocation of resources to the unlicensed users or Secondary Users (SUs) to access the spectrum those are unused by the licensed users or Primary Users (Pus). This paper develops an Optimal Relay Selection scheme with the spectrum-sharing scheme in CRN. The proposed Cross-Layer Spider Swarm Shifting is implemented in CRN for the optimal relay selection with Spider Swarm Optimization (SSO). The shortest path is estimated with the data shifting model for the data transmission path in the CRN. This study examines a cognitive relay network (CRN) with interference restrictions imposed by a mobile end user (MU). Half-duplex communication is used in the proposed system model between a single primary user (PU) and a single secondary user (SU). Between the SU source and SU destination, an amplify and forward (AF) relaying mechanism is also used. While other nodes (SU Source, SU relays, and PU) are supposed to be immobile in this scenario, the mobile end user (SU destination) is assumed to travel at high vehicle speeds. The suggested method achieves variety by placing a selection combiner at the SU destination and dynamically selecting the optimal relay for transmission based on the greatest signal-to-noise (SNR) ratio. The performance of the proposed Cross-Layer Spider Swarm Shifting model is compared with the Spectrum Sharing Optimization with QoS Guarantee (SSO-QG). The comparative analysis expressed that the proposed Cross-Layer Spider Swarm Shifting model delay is reduced by 15% compared with SSO-QG. Additionally, the proposed Cross-Layer Spider Swarm Shifting exhibits the improved network performance of ~25% higher throughput compared with SSO-QG.

相關內容

網絡爬蟲(又被稱為網頁蜘蛛,網絡機器人,在FOAF社區中間,更經常被稱為網頁追逐者),是一種按照一定的規則,自動的抓取萬維網信息的程序或者腳本,已被廣泛應用于互聯網領域。搜索引擎使用網絡爬蟲抓取Web網頁、文檔甚至圖片、音頻、視頻等資源,通過相應的索引技術組織這些信息,提供給搜索用戶進行查詢。網絡爬蟲也為中小站點的推廣提供了有效的途徑。

A rectangulation is a decomposition of a rectangle into finitely many rectangles. Via natural equivalence relations, rectangulations can be seen as combinatorial objects with a rich structure, with links to lattice congruences, flip graphs, polytopes, lattice paths, Hopf algebras, etc. In this paper, we first revisit the structure of the respective equivalence classes: weak rectangulations that preserve rectangle-segment adjacencies, and strong rectangulations that preserve rectangle-rectangle adjacencies. We thoroughly investigate posets defined by adjacency in rectangulations of both kinds, and unify and simplify known bijections between rectangulations and permutation classes. This yields a uniform treatment of mappings between permutations and rectangulations that unifies the results from earlier contributions, and emphasizes parallelism and differences between the weak and the strong cases. Then, we consider the special case of guillotine rectangulations, and prove that they can be characterized - under all known mappings between permutations and rectangulations - by avoidance of two mesh patterns that correspond to "windmills" in rectangulations. This yields new permutation classes in bijection with weak guillotine rectangulations, and the first known permutation class in bijection with strong guillotine rectangulations. Finally, we address enumerative issues and prove asymptotic bounds for several families of strong rectangulations.

In Hyperparameter Optimization (HPO), only the hyperparameter configuration with the best performance is chosen after performing several trials, then, discarding the effort of training all the models with every hyperparameter configuration trial and performing an ensemble of all them. This ensemble consists of simply averaging the model predictions or weighting the models by a certain probability. Recently, other more sophisticated ensemble strategies, such as the Caruana method or the stacking strategy has been proposed. On the one hand, the Caruana method performs well in HPO ensemble, since it is not affected by the effects of multicollinearity, which is prevalent in HPO. It just computes the average over a subset of predictions with replacement. But it does not benefit from the generalization power of a learning process. On the other hand, stacking methods include a learning procedure since a meta-learner is required to perform the ensemble. Yet, one hardly finds advice about which meta-learner is adequate. Besides, some meta-learners may suffer from the effects of multicollinearity or need to be tuned to reduce them. This paper explores meta-learners for stacking ensemble in HPO, free of hyperparameter tuning, able to reduce the effects of multicollinearity and considering the ensemble learning process generalization power. At this respect, the boosting strategy seems promising as a stacking meta-learner. In fact, it completely removes the effects of multicollinearity. This paper also proposes an implicit regularization in the classical boosting method and a novel non-parametric stop criterion suitable only for boosting and specifically designed for HPO. The synergy between these two improvements over boosting exhibits competitive and promising predictive power performance compared to other existing meta-learners and ensemble approaches for HPO other than the stacking ensemble.

Forecasts for key macroeconomic variables are almost always made simultaneously by the same organizations, presented together, and used together in policy analyses and decision-makings. It is therefore important to know whether the forecasters are skillful enough to forecast the future values of those variables. Here a method for joint evaluation of skill in directional forecasts of multiple variables is introduced. The method is simple to use and does not rely on complicated assumptions required by the conventional statistical methods for measuring accuracy of directional forecast. The data on GDP growth and inflation forecasts of three organizations from Thailand, namely, the Bank of Thailand, the Fiscal Policy Office, and the Office of the National Economic and Social Development Council as well as the actual data on GDP growth and inflation of Thailand between 2001 and 2021 are employed in order to demonstrate how the method could be used to evaluate the skills of forecasters in practice. The overall results indicate that these three organizations are somewhat skillful in forecasting the direction-of-changes of GDP growth and inflation when no band and a band of +/- 1 standard deviation of the forecasted outcome are considered. However, when a band of +/- 0.5% of the forecasted outcome is introduced, the skills in forecasting the direction-of-changes of GDP growth and inflation of these three organizations are, at best, little better than intelligent guess work.

Conventional neural network elastoplasticity models are often perceived as lacking interpretability. This paper introduces a two-step machine learning approach that returns mathematical models interpretable by human experts. In particular, we introduce a surrogate model where yield surfaces are expressed in terms of a set of single-variable feature mappings obtained from supervised learning. A post-processing step is then used to re-interpret the set of single-variable neural network mapping functions into mathematical form through symbolic regression. This divide-and-conquer approach provides several important advantages. First, it enables us to overcome the scaling issue of symbolic regression algorithms. From a practical perspective, it enhances the portability of learned models for partial differential equation solvers written in different programming languages. Finally, it enables us to have a concrete understanding of the attributes of the materials, such as convexity and symmetries of models, through automated derivations and reasoning. Numerical examples have been provided, along with an open-source code to enable third-party validation.

We propose a new numerical domain decomposition method for solving elliptic equations on compact Riemannian manifolds. One advantage of this method is its ability to bypass the need for global triangulations or grids on the manifolds. Additionally, it features a highly parallel iterative scheme. To verify its efficacy, we conduct numerical experiments on some $4$-dimensional manifolds without and with boundary.

We present a monolithic finite element formulation for (nonlinear) fluid-structure interaction in Eulerian coordinates. For the discretization we employ an unfitted finite element method based on inf-sup stable finite elements. So-called ghost penalty terms are used to guarantee the robustness of the approach independently of the way the interface cuts the finite element mesh. The resulting system is solved in a monolithic fashion using Newton's method. Our developments are tested on a numerical example with fixed interface.

Numerical solutions for flows in partially saturated porous media pose challenges related to the non-linearity and elliptic-parabolic degeneracy of the governing Richards' equation. Iterative methods are therefore required to manage the complexity of the flow problem. Norms of successive corrections in the iterative procedure form sequences of positive numbers. Definitions of computational orders of convergence and theoretical results for abstract convergent sequences can thus be used to evaluate and compare different iterative methods. We analyze in this frame Newton's and $L$-scheme methods for an implicit finite element method (FEM) and the $L$-scheme for an explicit finite difference method (FDM). We also investigate the effect of the Anderson Acceleration (AA) on both the implicit and the explicit $L$-schemes. Considering a two-dimensional test problem, we found that the AA halves the number of iterations and renders the convergence of the FEM scheme two times faster. As for the FDM approach, AA does not reduce the number of iterations and even increases the computational effort. Instead, being explicit, the FDM $L$-scheme without AA is faster and as accurate as the FEM $L$-scheme with AA.

Effect modification occurs when the impact of the treatment on an outcome varies based on the levels of other covariates known as effect modifiers. Modeling of these effect differences is important for etiological goals and for purposes of optimizing treatment. Structural nested mean models (SNMMs) are useful causal models for estimating the potentially heterogeneous effect of a time-varying exposure on the mean of an outcome in the presence of time-varying confounding. In longitudinal health studies, information on many demographic, behavioural, biological, and clinical covariates may be available, among which some might cause heterogeneous treatment effects. A data-driven approach for selecting the effect modifiers of an exposure may be necessary if these effect modifiers are \textit{a priori} unknown and need to be identified. Although variable selection techniques are available in the context of estimating conditional average treatment effects using marginal structural models, or in the context of estimating optimal dynamic treatment regimens, all of these methods consider an outcome measured at a single point in time. In the context of an SNMM for repeated outcomes, we propose a doubly robust penalized G-estimator for the causal effect of a time-varying exposure with a simultaneous selection of effect modifiers and prove the oracle property of our estimator. We conduct a simulation study to evaluate the performance of the proposed estimator in finite samples and for verification of its double-robustness property. Our work is motivated by a study of hemodiafiltration for treating patients with end-stage renal disease at the Centre Hospitalier de l'Universit\'e de Montr\'eal.

Using validated numerical methods, interval arithmetic and Taylor models, we propose a certified predictor-corrector loop for tracking zeros of polynomial systems with a parameter. We provide a Rust implementation which shows tremendous improvement over existing software for certified path tracking.

We introduce a predictor-corrector discretisation scheme for the numerical integration of a class of stochastic differential equations and prove that it converges with weak order 1.0. The key feature of the new scheme is that it builds up sequentially (and recursively) in the dimension of the state space of the solution, hence making it suitable for approximations of high-dimensional state space models. We show, using the stochastic Lorenz 96 system as a test model, that the proposed method can operate with larger time steps than the standard Euler-Maruyama scheme and, therefore, generate valid approximations with a smaller computational cost. We also introduce the theoretical analysis of the error incurred by the new predictor-corrector scheme when used as a building block for discrete-time Bayesian filters for continuous-time systems. Finally, we assess the performance of several ensemble Kalman filters that incorporate the proposed sequential predictor-corrector Euler scheme and the standard Euler-Maruyama method. The numerical experiments show that the filters employing the new sequential scheme can operate with larger time steps, smaller Monte Carlo ensembles and noisier systems.

北京阿比特科技有限公司