亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The decoding algorithm is critical for open-ended text generation, transforming latent representations into coherent and meaningful outputs. This paper investigates the self-reinforcement effect in text generation and the effectiveness of a repetition penalty to mitigate it. However, determining the optimal repetition penalty value is challenging. To tackle this, we propose a forgetting mechanism that disregards distant tokens, reducing the burden of penalty selection. In addition, we introduce a length penalty to address overly short sentences caused by excessive penalties. Our penalty decoding approach incorporating three strategies helps resolve issues with sampling methods deviating from factual information. Experimental results demonstrate the efficacy of our approach in generating high-quality sentences resembling human output.

相關內容

In emerging scientific computing environments, matrix computations of increasing size and complexity are increasingly becoming prevalent. However, contemporary matrix language implementations are insufficient in their support for efficient utilization of cloud computing resources, particularly on the user side. We thus developed an extension of the Julia high-performance computation language such that matrix computations are automatically parallelized in the cloud, where users are separated from directly interacting with complex explicitly-parallel computations. We implement lazy evaluation semantics combined with directed graphs to optimize matrix operations on the fly while dynamic simulation finds the optimal tile size and schedule for a given cluster of cloud nodes. A time model prediction of the cluster's performance capacity is constructed to enable simulations. Automatic configuration of communication and worker processes on the cloud networks allow for the framework to automatically scale up for clusters of heterogeneous nodes. Our framework's experimental evaluation comprises eleven benchmarks on an fourteen node (564 CPUs) cluster in the AWS public cloud, revealing speedups of up to a factor of 5.1, with an average 74.39% of the upper bound for speedups.

We present IntrinsicAvatar, a novel approach to recovering the intrinsic properties of clothed human avatars including geometry, albedo, material, and environment lighting from only monocular videos. Recent advancements in human-based neural rendering have enabled high-quality geometry and appearance reconstruction of clothed humans from just monocular videos. However, these methods bake intrinsic properties such as albedo, material, and environment lighting into a single entangled neural representation. On the other hand, only a handful of works tackle the problem of estimating geometry and disentangled appearance properties of clothed humans from monocular videos. They usually achieve limited quality and disentanglement due to approximations of secondary shading effects via learned MLPs. In this work, we propose to model secondary shading effects explicitly via Monte-Carlo ray tracing. We model the rendering process of clothed humans as a volumetric scattering process, and combine ray tracing with body articulation. Our approach can recover high-quality geometry, albedo, material, and lighting properties of clothed humans from a single monocular video, without requiring supervised pre-training using ground truth materials. Furthermore, since we explicitly model the volumetric scattering process and ray tracing, our model naturally generalizes to novel poses, enabling animation of the reconstructed avatar in novel lighting conditions.

Community detection is the problem of identifying natural divi sions in networks. Efficient parallel algorithms for identifying such divisions is critical in a number of applications, where the size of datasets have reached significant scales. This technical report presents an optimized parallel implementation of Louvain, a high quality community detection method, for shared memory multicore systems. On a server equipped with dual 16-core Intel Xeon Gold 6226R processors, our Louvain, which we term as GVE-Louvain, outperforms Vite, Grappolo, and NetworKit Louvain by 50x, 22x, and 20x respectively - achieving a processing rate of 560M edges/s on a 3.8B edge graph. In addition, GVE-Louvain improves perfor mance at an average rate of 1.6x for every doubling of threads

Traditionally, data valuation (DV) is posed as a problem of equitably splitting the validation performance of a learning algorithm among the training data. As a result, the calculated data values depend on many design choices of the underlying learning algorithm. However, this dependence is undesirable for many DV use cases, such as setting priorities over different data sources in a data acquisition process and informing pricing mechanisms in a data marketplace. In these scenarios, data needs to be valued before the actual analysis and the choice of the learning algorithm is still undetermined then. Another side-effect of the dependence is that to assess the value of individual points, one needs to re-run the learning algorithm with and without a point, which incurs a large computation burden. This work leapfrogs over the current limits of data valuation methods by introducing a new framework that can value training data in a way that is oblivious to the downstream learning algorithm. Our main results are as follows. (1) We develop a proxy for the validation performance associated with a training set based on a non-conventional class-wise Wasserstein distance between training and validation sets. We show that the distance characterizes the upper bound of the validation performance for any given model under certain Lipschitz conditions. (2) We develop a novel method to value individual data based on the sensitivity analysis of the class-wise Wasserstein distance. Importantly, these values can be directly obtained for free from the output of off-the-shelf optimization solvers when computing the distance. (3) We evaluate our new data valuation framework over various use cases related to detecting low-quality data and show that, surprisingly, the learning-agnostic feature of our framework enables a significant improvement over SOTA performance while being orders of magnitude faster.

Code provides a general syntactic structure to build complex programs and perform precise computations when paired with a code interpreter -- we hypothesize that language models (LMs) can leverage code-writing to improve Chain of Thought reasoning not only for logic and arithmetic tasks, but also for linguistic ones (and in particular, those that are a mix of both). For example, consider prompting an LM to write code that counts the number of times it detects sarcasm in an essay: the LM may struggle to write an implementation for "detect_sarcasm(string)" that can be executed by the interpreter (handling the edge cases would be insurmountable). However, LMs may still produce a valid solution if they are used not only to write the code, but also to selectively "emulate" the interpreter by generating the expected output of "detect_sarcasm(string)" and other lines of code (e.g., that the interpreter could not compile). In this work, we propose Chain of Code (CoT), a simple yet surprisingly effective extension that improves LM code-driven reasoning. The key idea is to encourage LMs to format linguistic sub-tasks in a program as flexible pseudocode that the compiler can explicitly catch undefined behaviors and hand off to simulate with an LM (as an "LMulator"). Experiments demonstrate that Chain of Code outperforms Chain of Thought and other baselines across a variety of benchmarks; on BIG-Bench Hard, Chain of Code achieves 84%, a gain of 12% over Chain of Thought. CoT scales well with large and small models alike, and broadens the scope of reasoning questions that LMs can correctly answer by "thinking in code". Project webpage: //chain-of-code.github.io/.

This study uncovers the factor of general intelligence, or g, in language models, extending the psychometric theory traditionally applied to humans and certain animal species. Utilizing factor analysis on two extensive datasets - Open LLM Leaderboard with 1,232 models and General Language Understanding Evaluation (GLUE) Leaderboard with 88 models - we find compelling evidence for a unidimensional, highly stable g factor that accounts for 85% of the variance in model performance. The study also finds a moderate correlation of .49 between model size and g. The discovery of g in language models offers a unified metric for model evaluation and opens new avenues for more robust, g-based model ability assessment. These findings lay the foundation for understanding and future research on artificial general intelligence from a psychometric perspective and have practical implications for model evaluation and development.

Stylistic analysis of text is a key task in research areas ranging from authorship attribution to forensic analysis and personality profiling. The existing approaches for stylistic analysis are plagued by issues like topic influence, lack of discriminability for large number of authors and the requirement for large amounts of diverse data. In this paper, the source of these issues are identified along with the necessity for a cognitive perspective on authorial style in addressing them. A novel feature representation, called Trajectory-based Style Estimation (TraSE), is introduced to support this purpose. Authorship attribution experiments with over 27,000 authors and 1.4 million samples in a cross-domain scenario resulted in 90% attribution accuracy suggesting that the feature representation is immune to such negative influences and an excellent candidate for stylistic analysis. Finally, a qualitative analysis is performed on TraSE using physical human characteristics, like age, to validate its claim on capturing cognitive traits.

Causal Machine Learning (CausalML) is an umbrella term for machine learning methods that formalize the data-generation process as a structural causal model (SCM). This allows one to reason about the effects of changes to this process (i.e., interventions) and what would have happened in hindsight (i.e., counterfactuals). We categorize work in \causalml into five groups according to the problems they tackle: (1) causal supervised learning, (2) causal generative modeling, (3) causal explanations, (4) causal fairness, (5) causal reinforcement learning. For each category, we systematically compare its methods and point out open problems. Further, we review modality-specific applications in computer vision, natural language processing, and graph representation learning. Finally, we provide an overview of causal benchmarks and a critical discussion of the state of this nascent field, including recommendations for future work.

The existence of representative datasets is a prerequisite of many successful artificial intelligence and machine learning models. However, the subsequent application of these models often involves scenarios that are inadequately represented in the data used for training. The reasons for this are manifold and range from time and cost constraints to ethical considerations. As a consequence, the reliable use of these models, especially in safety-critical applications, is a huge challenge. Leveraging additional, already existing sources of knowledge is key to overcome the limitations of purely data-driven approaches, and eventually to increase the generalization capability of these models. Furthermore, predictions that conform with knowledge are crucial for making trustworthy and safe decisions even in underrepresented scenarios. This work provides an overview of existing techniques and methods in the literature that combine data-based models with existing knowledge. The identified approaches are structured according to the categories integration, extraction and conformity. Special attention is given to applications in the field of autonomous driving.

Deep reinforcement learning algorithms can perform poorly in real-world tasks due to the discrepancy between source and target environments. This discrepancy is commonly viewed as the disturbance in transition dynamics. Many existing algorithms learn robust policies by modeling the disturbance and applying it to source environments during training, which usually requires prior knowledge about the disturbance and control of simulators. However, these algorithms can fail in scenarios where the disturbance from target environments is unknown or is intractable to model in simulators. To tackle this problem, we propose a novel model-free actor-critic algorithm -- namely, state-conservative policy optimization (SCPO) -- to learn robust policies without modeling the disturbance in advance. Specifically, SCPO reduces the disturbance in transition dynamics to that in state space and then approximates it by a simple gradient-based regularizer. The appealing features of SCPO include that it is simple to implement and does not require additional knowledge about the disturbance or specially designed simulators. Experiments in several robot control tasks demonstrate that SCPO learns robust policies against the disturbance in transition dynamics.

北京阿比特科技有限公司