We show that the parameters of a $k$-mixture of inverse Gaussian or gamma distributions are algebraically identifiable from the first $3k-1$ moments, and rationally identifiable from the first $3k+2$ moments. Our proofs are based on Terracini's classification of defective surfaces, careful analysis of the intersection theory of moment varieties, and a recent result on sufficient conditions for rational identifiability of secant varieties by Massarenti--Mella.
The study of diffeomorphism groups and their applications to problems in analysis and geometry has a long history. In geometric hydrodynamics, pioneered by V.~Arnold in the 1960s, one considers an ideal fluid flow as the geodesic motion on the infinite-dimensional group of volume-preserving diffeomorphisms of the fluid domain with respect to the metric defined by the kinetic energy. Similar considerations on the space of densities lead to a geometric description of optimal mass transport and the Kantorovich-Wasserstein metric. Likewise, information geometry associated with the Fisher-Rao metric and the Hellinger distance has an equally beautiful infinite-dimensional geometric description and can be regarded as a higher-order Sobolev analogue of optimal transportation. In this work we review various metrics on diffeomorphism groups relevant to this approach and introduce appropriate topology, smooth structures and dynamics on the corresponding infinite-dimensional manifolds. Our main goal is to demonstrate how, alongside topological hydrodynamics, Hamiltonian dynamics and optimal mass transport, information geometry with its elaborate toolbox has become yet another exciting field for applications of geometric analysis on diffeomorphism groups.
We consider random matrix ensembles on the set of Hermitian matrices that are heavy tailed, in particular not all moments exist, and that are invariant under the conjugate action of the unitary group. The latter property entails that the eigenvectors are Haar distributed and, therefore, factorise from the eigenvalue statistics. We prove a classification for stable matrix ensembles of this kind of matrices represented in terms of matrices, their eigenvalues and their diagonal entries with the help of the classification of the multivariate stable distributions and the harmonic analysis on symmetric matrix spaces. Moreover, we identify sufficient and necessary conditions for their domains of attraction. To illustrate our findings we discuss for instance elliptical invariant random matrix ensembles and P\'olya ensembles, the latter playing a particular role in matrix convolutions. As a byproduct we generalise the derivative principle on the Hermitian matrices to general tempered distributions. This principle relates the joint probability density of the eigenvalues and the diagonal entries of the random matrix.
This paper deals with Elliptical Wishart distributions - which generalize the Wishart distribution - in the context of signal processing and machine learning. Two algorithms to compute the maximum likelihood estimator (MLE) are proposed: a fixed point algorithm and a Riemannian optimization method based on the derived information geometry of Elliptical Wishart distributions. The existence and uniqueness of the MLE are characterized as well as the convergence of both estimation algorithms. Statistical properties of the MLE are also investigated such as consistency, asymptotic normality and an intrinsic version of Fisher efficiency. On the statistical learning side, novel classification and clustering methods are designed. For the $t$-Wishart distribution, the performance of the MLE and statistical learning algorithms are evaluated on both simulated and real EEG and hyperspectral data, showcasing the interest of our proposed methods.
We propose a tamed-adaptive Milstein scheme for stochastic differential equations in which the first-order derivatives of the coefficients are locally H\"older continuous of order $\alpha$. We show that the scheme converges in the $L_2$-norm with a rate of $(1+\alpha)/2$ over both finite intervals $[0, T]$ and the infinite interval $(0, +\infty)$, under certain growth conditions on the coefficients.
Parameter inference for linear and non-Gaussian state space models is challenging because the likelihood function contains an intractable integral over the latent state variables. While Markov chain Monte Carlo (MCMC) methods provide exact samples from the posterior distribution as the number of samples go to infinity, they tend to have high computational cost, particularly for observations of a long time series. Variational Bayes (VB) methods are a useful alternative when inference with MCMC methods is computationally expensive. VB methods approximate the posterior density of the parameters by a simple and tractable distribution found through optimisation. In this paper, we propose a novel sequential variational Bayes approach that makes use of the Whittle likelihood for computationally efficient parameter inference in this class of state space models. Our algorithm, which we call Recursive Variational Gaussian Approximation with the Whittle Likelihood (R-VGA-Whittle), updates the variational parameters by processing data in the frequency domain. At each iteration, R-VGA-Whittle requires the gradient and Hessian of the Whittle log-likelihood, which are available in closed form for a wide class of models. Through several examples using a linear Gaussian state space model and a univariate/bivariate non-Gaussian stochastic volatility model, we show that R-VGA-Whittle provides good approximations to posterior distributions of the parameters and is very computationally efficient when compared to asymptotically exact methods such as Hamiltonian Monte Carlo.
We present and analyze two stabilized finite element methods for solving numerically the Poisson--Nernst--Planck equations. The stabilization we consider is carried out by using a shock detector and a discrete graph Laplacian operator for the ion equations, whereas the discrete equation for the electric potential need not be stabilized. Discrete solutions stemmed from the first algorithm preserve both maximum and minimum discrete principles. For the second algorithm, its discrete solutions are conceived so that they hold discrete principles and obey an entropy law provided that an acuteness condition is imposed for meshes. Remarkably the latter is found to be unconditionally stable. We validate our methodology through numerical experiments.
We prove explicit uniform two-sided bounds for the phase functions of Bessel functions and of their derivatives. As a consequence, we obtain new enclosures for the zeros of Bessel functions and their derivatives in terms of inverse values of some elementary functions. These bounds are valid, with a few exceptions, for all zeros and all Bessel functions with non-negative indices. We provide numerical evidence showing that our bounds either improve or closely match the best previously known ones.
In this note, when the dimension $p$ is large we look into the insight of the Mar$\check{c}$enko-Pastur equation to get an explicit equality relationship, and use the obtained equality to establish a new kind of orthogonally equivariant estimator of the population covariance matrix. Under some regularity conditions, the proposed novel estimators of the population eigenvalues are shown to be consistent for the eigenvalues of population covariance matrix. It is also shown that the proposed estimator is the best orthogonally equivariant estimator of population covariance matrix under the normalized Stein loss function.
QAC$^0$ is the class of constant-depth quantum circuits with polynomially many ancillary qubits, where Toffoli gates on arbitrarily many qubits are allowed. In this work, we show that the parity function cannot be computed in QAC$^0$, resolving a long-standing open problem in quantum circuit complexity more than twenty years old. As a result, this proves ${\rm QAC}^0 \subsetneqq {\rm QAC}_{\rm wf}^0$. We also show that any QAC circuit of depth $d$ that approximately computes parity on $n$ bits requires $2^{\widetilde{\Omega}(n^{1/d})}$ ancillary qubits, which is close to tight. This implies a similar lower bound on approximately preparing cat states using QAC circuits. Finally, we prove a quantum analog of the Linial-Mansour-Nisan theorem for QAC$^0$. This implies that, for any QAC$^0$ circuit $U$ with $a={\rm poly}(n)$ ancillary qubits, and for any $x\in\{0,1\}^n$, the correlation between $Q(x)$ and the parity function is bounded by ${1}/{2} + 2^{-\widetilde{\Omega}(n^{1/d})}$, where $Q(x)$ denotes the output of measuring the output qubit of $U|x,0^a\rangle$. All the above consequences rely on the following technical result. If $U$ is a QAC$^0$ circuit with $a={\rm poly}(n)$ ancillary qubits, then there is a distribution $\mathcal{D}$ of bounded polynomials of degree polylog$(n)$ such that with high probability, a random polynomial from $\mathcal{D}$ approximates the function $\langle x,0^a| U^\dag Z_{n+1} U |x,0^a\rangle$ for a large fraction of $x\in \{0,1\}^n$. This result is analogous to the Razborov-Smolensky result on the approximation of AC$^0$ circuits by random low-degree polynomials.
We introduce an algebraic concept of the frame for abstract conditional independence (CI) models, together with basic operations with respect to which such a frame should be closed: copying and marginalization. Three standard examples of such frames are (discrete) probabilistic CI structures, semi-graphoids and structural semi-graphoids. We concentrate on those frames which are closed under the operation of set-theoretical intersection because, for these, the respective families of CI models are lattices. This allows one to apply the results from lattice theory and formal concept analysis to describe such families in terms of implications among CI statements. The central concept of this paper is that of self-adhesivity defined in algebraic terms, which is a combinatorial reflection of the self-adhesivity concept studied earlier in context of polymatroids and information theory. The generalization also leads to a self-adhesivity operator defined on the hyper-level of CI frames. We answer some of the questions related to this approach and raise other open questions. The core of the paper is in computations. The combinatorial approach to computation might overcome some memory and space limitation of software packages based on polyhedral geometry, in particular, if SAT solvers are utilized. We characterize some basic CI families over 4 variables in terms of canonical implications among CI statements. We apply our method in information-theoretical context to the task of entropic region demarcation over 5 variables.