亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Dimensionality reduction techniques are widely used for visualizing high-dimensional data. However, support for interpreting patterns of dimension reduction results in the context of the original data space is often insufficient. Consequently, users may struggle to extract insights from the projections. In this paper, we introduce DimBridge, a visual analytics tool that allows users to interact with visual patterns in a projection and retrieve corresponding data patterns. DimBridge supports several interactions, allowing users to perform various analyses, from contrasting multiple clusters to explaining complex latent structures. Leveraging first-order predicate logic, DimBridge identifies subspaces in the original dimensions relevant to a queried pattern and provides an interface for users to visualize and interact with them. We demonstrate how DimBridge can help users overcome the challenges associated with interpreting visual patterns in projections.

相關內容

IFIP TC13 Conference on Human-Computer Interaction是人機交互領域的研究者和實踐者展示其工作的重要平臺。多年來,這些會議吸引了來自幾個國家和文化的研究人員。官網鏈接: · 黑盒 · 代價 · 示例 · 輸出 ·
2024 年 5 月 21 日

Counterfactual explanations provide a popular method for analyzing the predictions of black-box systems, and they can offer the opportunity for computational recourse by suggesting actionable changes on how to change the input to obtain a different (i.e.\ more favorable) system output. However, recent work highlighted their vulnerability to different types of manipulations. This work studies the vulnerability of counterfactual explanations to data poisoning. We formally introduce and investigate data poisoning in the context of counterfactual explanations for increasing the cost of recourse on three different levels: locally for a single instance, or a sub-group of instances, or globally for all instances. In this context, we characterize and prove the correctness of several different data poisonings. We also empirically demonstrate that state-of-the-art counterfactual generation methods and toolboxes are vulnerable to such data poisoning.

As part of the Internet of Things (IoT) and Industry 4.0 Cloud services are increasingly interacting with low-performance devices that are used in automation. This results in security issues that will be presented in this paper. Particular attention is paid to so-called critical infrastructures. The authors intend to work on the addressed security challenges as part of a funded research project, using electrical actuators and battery storages as specific applications. The core ideas of this research project are also presented in this paper.

This research delves into the enhancement of control mechanisms for the da Vinci Surgical System, focusing on the implementation of gravity compensation and refining the modeling of the master and patient side manipulators. Leveraging the Robot Operating System (ROS) the study aimed to fortify the precision and stability of the robots movements essential for intricate surgical procedures. Through rigorous parameter identification and the Euler Lagrange approach the team successfully derived the necessary torque equations and established a robust mathematical model. Implementation of the actual robot and simulation in Gazebo highlighted the efficacy of the developed control strategies facilitating accurate positioning and minimizing drift. Additionally, the project extended its contributions by constructing a comprehensive model for the patient side manipulator laying the groundwork for future research endeavors. This work signifies a significant advancement in the pursuit of enhanced precision and user control in robotic assisted surgeries. NOTE - This work has been submitted to the IEEE R-AL for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.

Modeling visual saliency in graphical user interfaces (GUIs) allows to understand how people perceive GUI designs and what elements attract their attention. One aspect that is often overlooked is the fact that computational models depend on a series of design parameters that are not straightforward to decide. We systematically analyze how different design parameters affect scanpath evaluation metrics using a state-of-the-art computational model (DeepGaze++). We particularly focus on three design parameters: input image size, inhibition-of-return decay, and masking radius. We show that even small variations of these design parameters have a noticeable impact on standard evaluation metrics such as DTW or Eyenalysis. These effects also occur in other scanpath models, such as UMSS and ScanGAN, and in other datasets such as MASSVIS. Taken together, our results put forward the impact of design decisions for predicting users' viewing behavior on GUIs.

Earth observation (EO) applications involving complex and heterogeneous data sources are commonly approached with machine learning models. However, there is a common assumption that data sources will be persistently available. Different situations could affect the availability of EO sources, like noise, clouds, or satellite mission failures. In this work, we assess the impact of missing temporal and static EO sources in trained models across four datasets with classification and regression tasks. We compare the predictive quality of different methods and find that some are naturally more robust to missing data. The Ensemble strategy, in particular, achieves a prediction robustness up to 100%. We evidence that missing scenarios are significantly more challenging in regression than classification tasks. Finally, we find that the optical view is the most critical view when it is missing individually.

Reasoning, a crucial ability for complex problem-solving, plays a pivotal role in various real-world settings such as negotiation, medical diagnosis, and criminal investigation. It serves as a fundamental methodology in the field of Artificial General Intelligence (AGI). With the ongoing development of foundation models, e.g., Large Language Models (LLMs), there is a growing interest in exploring their abilities in reasoning tasks. In this paper, we introduce seminal foundation models proposed or adaptable for reasoning, highlighting the latest advancements in various reasoning tasks, methods, and benchmarks. We then delve into the potential future directions behind the emergence of reasoning abilities within foundation models. We also discuss the relevance of multimodal learning, autonomous agents, and super alignment in the context of reasoning. By discussing these future research directions, we hope to inspire researchers in their exploration of this field, stimulate further advancements in reasoning with foundation models, and contribute to the development of AGI.

Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.

Most recent semantic segmentation methods adopt a fully-convolutional network (FCN) with an encoder-decoder architecture. The encoder progressively reduces the spatial resolution and learns more abstract/semantic visual concepts with larger receptive fields. Since context modeling is critical for segmentation, the latest efforts have been focused on increasing the receptive field, through either dilated/atrous convolutions or inserting attention modules. However, the encoder-decoder based FCN architecture remains unchanged. In this paper, we aim to provide an alternative perspective by treating semantic segmentation as a sequence-to-sequence prediction task. Specifically, we deploy a pure transformer (ie, without convolution and resolution reduction) to encode an image as a sequence of patches. With the global context modeled in every layer of the transformer, this encoder can be combined with a simple decoder to provide a powerful segmentation model, termed SEgmentation TRansformer (SETR). Extensive experiments show that SETR achieves new state of the art on ADE20K (50.28% mIoU), Pascal Context (55.83% mIoU) and competitive results on Cityscapes. Particularly, we achieve the first (44.42% mIoU) position in the highly competitive ADE20K test server leaderboard.

Deep neural networks (DNNs) are successful in many computer vision tasks. However, the most accurate DNNs require millions of parameters and operations, making them energy, computation and memory intensive. This impedes the deployment of large DNNs in low-power devices with limited compute resources. Recent research improves DNN models by reducing the memory requirement, energy consumption, and number of operations without significantly decreasing the accuracy. This paper surveys the progress of low-power deep learning and computer vision, specifically in regards to inference, and discusses the methods for compacting and accelerating DNN models. The techniques can be divided into four major categories: (1) parameter quantization and pruning, (2) compressed convolutional filters and matrix factorization, (3) network architecture search, and (4) knowledge distillation. We analyze the accuracy, advantages, disadvantages, and potential solutions to the problems with the techniques in each category. We also discuss new evaluation metrics as a guideline for future research.

Deep convolutional neural networks (CNNs) have recently achieved great success in many visual recognition tasks. However, existing deep neural network models are computationally expensive and memory intensive, hindering their deployment in devices with low memory resources or in applications with strict latency requirements. Therefore, a natural thought is to perform model compression and acceleration in deep networks without significantly decreasing the model performance. During the past few years, tremendous progress has been made in this area. In this paper, we survey the recent advanced techniques for compacting and accelerating CNNs model developed. These techniques are roughly categorized into four schemes: parameter pruning and sharing, low-rank factorization, transferred/compact convolutional filters, and knowledge distillation. Methods of parameter pruning and sharing will be described at the beginning, after that the other techniques will be introduced. For each scheme, we provide insightful analysis regarding the performance, related applications, advantages, and drawbacks etc. Then we will go through a few very recent additional successful methods, for example, dynamic capacity networks and stochastic depths networks. After that, we survey the evaluation matrix, the main datasets used for evaluating the model performance and recent benchmarking efforts. Finally, we conclude this paper, discuss remaining challenges and possible directions on this topic.

北京阿比特科技有限公司