亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Embodied conversation agents (ECAs) are increasingly being developed for older adults as assistants or companions. Older adults may not be familiar with ECAs, influencing uptake and acceptability. First impressions can correlate strongly with subsequent judgments, even of computer agents, and could influence acceptance. Using the circumplex model of affect, we developed three versions of an ECA -- laughing, smiling, and neutral in expression -- to evaluate how positive first impressions affect acceptance. Results from 249 older adults indicated no statistically significant effects except for general attitudes towards technology and intelligent agents. This questions the potential of laughter, jokes, puns, and smiles as a method of initial engagement for older adults.

相關內容

CIS is a prominent area in IR which focuses on developing interactive knowledge assistants. These systems must adeptly comprehend the user's information requirements within the conversational context and retrieve the relevant information. To this aim, the existing approaches model the user's information needs by generating a single query rewrite or a single representation of the query in the query space embedding. However, to answer complex questions, a single query rewrite or representation is often ineffective. To address this, a system needs to do reasoning over multiple passages. In this work, we propose using a generate-then-retrieve approach to improve the passage retrieval performance for complex user queries. In this approach, we utilize large language models (LLMs) to (i) generate an initial answer to the user's information need by doing reasoning over the context of the conversation, and (ii) ground this answer to the collection. Based on the experiments, our proposed approach significantly improves the retrieval performance on TREC iKAT 23, TREC CAsT 20 and 22 datasets, under various setups. Also, we show that grounding the LLM's answer requires more than one searchable query, where an average of 3 queries outperforms human rewrites.

Large language models (LLMs) have recently experienced tremendous popularity and are widely used from casual conversations to AI-driven programming. However, despite their considerable success, LLMs are not entirely reliable and can give detailed guidance on how to conduct harmful or illegal activities. While safety measures can reduce the risk of such outputs, adversarial jailbreak attacks can still exploit LLMs to produce harmful content. These jailbreak templates are typically manually crafted, making large-scale testing challenging. In this paper, we introduce GPTFuzz, a novel black-box jailbreak fuzzing framework inspired by the AFL fuzzing framework. Instead of manual engineering, GPTFuzz automates the generation of jailbreak templates for red-teaming LLMs. At its core, GPTFuzz starts with human-written templates as initial seeds, then mutates them to produce new templates. We detail three key components of GPTFuzz: a seed selection strategy for balancing efficiency and variability, mutate operators for creating semantically equivalent or similar sentences, and a judgment model to assess the success of a jailbreak attack. We evaluate GPTFuzz against various commercial and open-source LLMs, including ChatGPT, LLaMa-2, and Vicuna, under diverse attack scenarios. Our results indicate that GPTFuzz consistently produces jailbreak templates with a high success rate, surpassing human-crafted templates. Remarkably, GPTFuzz achieves over 90% attack success rates against ChatGPT and Llama-2 models, even with suboptimal initial seed templates. We anticipate that GPTFuzz will be instrumental for researchers and practitioners in examining LLM robustness and will encourage further exploration into enhancing LLM safety.

There are two main barriers to using large language models (LLMs) in clinical reasoning. Firstly, while LLMs exhibit significant promise in Natural Language Processing (NLP) tasks, their performance in complex reasoning and planning falls short of expectations. Secondly, LLMs use uninterpretable methods to make clinical decisions that are fundamentally different from the clinician's cognitive processes. This leads to user distrust. In this paper, we present a multi-agent framework called ArgMed-Agents, which aims to enable LLM-based agents to make explainable clinical decision reasoning through interaction. ArgMed-Agents performs self-argumentation iterations via Argumentation Scheme for Clinical Discussion (a reasoning mechanism for modeling cognitive processes in clinical reasoning), and then constructs the argumentation process as a directed graph representing conflicting relationships. Ultimately, use symbolic solver to identify a series of rational and coherent arguments to support decision. We construct a formal model of ArgMed-Agents and present conjectures for theoretical guarantees. ArgMed-Agents enables LLMs to mimic the process of clinical argumentative reasoning by generating explanations of reasoning in a self-directed manner. The setup experiments show that ArgMed-Agents not only improves accuracy in complex clinical decision reasoning problems compared to other prompt methods, but more importantly, it provides users with decision explanations that increase their confidence.

In ObjectGoal navigation (ObjectNav), agents must locate specific objects within unseen environments, requiring effective observation, prediction, and navigation capabilities. This study found that traditional methods looking only for prediction accuracy often compromise on computational efficiency. To address this, we introduce "Skip-SCAR," a modular framework that enhances efficiency by leveraging sparsity and adaptive skips. The SparseConv-Augmented ResNet (SCAR) at the core of our approach uses sparse and dense feature processing in parallel, optimizing both the computation and memory footprint. Our adaptive skip technique further reduces computational demands by selectively bypassing unnecessary semantic segmentation steps based on environmental constancy. Tested on the HM3D ObjectNav datasets, Skip-SCAR not only minimizes resource use but also sets new performance benchmarks, demonstrating a robust method for improving efficiency and accuracy in robotic navigation tasks.

AI agents aim to solve complex tasks by combining text-based reasoning with external tool calls. Unfortunately, AI agents are vulnerable to prompt injection attacks where data returned by external tools hijacks the agent to execute malicious tasks. To measure the adversarial robustness of AI agents, we introduce AgentDojo, an evaluation framework for agents that execute tools over untrusted data. To capture the evolving nature of attacks and defenses, AgentDojo is not a static test suite, but rather an extensible environment for designing and evaluating new agent tasks, defenses, and adaptive attacks. We populate the environment with 97 realistic tasks (e.g., managing an email client, navigating an e-banking website, or making travel bookings), 629 security test cases, and various attack and defense paradigms from the literature. We find that AgentDojo poses a challenge for both attacks and defenses: state-of-the-art LLMs fail at many tasks (even in the absence of attacks), and existing prompt injection attacks break some security properties but not all. We hope that AgentDojo can foster research on new design principles for AI agents that solve common tasks in a reliable and robust manner. We release the code for AgentDojo at //github.com/ethz-spylab/agentdojo.

Generative large language models (LLMs) have been shown to exhibit harmful biases and stereotypes. While safety fine-tuning typically takes place in English, if at all, these models are being used by speakers of many different languages. There is existing evidence that the performance of these models is inconsistent across languages and that they discriminate based on demographic factors of the user. Motivated by this, we investigate whether the social stereotypes exhibited by LLMs differ as a function of the language used to prompt them, while controlling for cultural differences and task accuracy. To this end, we present MBBQ (Multilingual Bias Benchmark for Question-answering), a carefully curated version of the English BBQ dataset extended to Dutch, Spanish, and Turkish, which measures stereotypes commonly held across these languages. We further complement MBBQ with a parallel control dataset to measure task performance on the question-answering task independently of bias. Our results based on several open-source and proprietary LLMs confirm that some non-English languages suffer from bias more than English, even when controlling for cultural shifts. Moreover, we observe significant cross-lingual differences in bias behaviour for all except the most accurate models. With the release of MBBQ, we hope to encourage further research on bias in multilingual settings. The dataset and code are available at //github.com/Veranep/MBBQ.

Large Language Model (LLM)-enhanced agents become increasingly prevalent in Human-AI communication, offering vast potential from entertainment to professional domains. However, current multi-modal dialogue systems overlook the acoustic information present in speech, which is crucial for understanding human communication nuances. This oversight can lead to misinterpretations of speakers' intentions, resulting in inconsistent or even contradictory responses within dialogues. To bridge this gap, in this paper, we propose PerceptiveAgent, an empathetic multi-modal dialogue system designed to discern deeper or more subtle meanings beyond the literal interpretations of words through the integration of speech modality perception. Employing LLMs as a cognitive core, PerceptiveAgent perceives acoustic information from input speech and generates empathetic responses based on speaking styles described in natural language. Experimental results indicate that PerceptiveAgent excels in contextual understanding by accurately discerning the speakers' true intentions in scenarios where the linguistic meaning is either contrary to or inconsistent with the speaker's true feelings, producing more nuanced and expressive spoken dialogues. Code is publicly available at: \url{//github.com/Haoqiu-Yan/PerceptiveAgent}.

Knowledge editing aims to adjust the knowledge within large language models (LLMs) to prevent their responses from becoming obsolete or inaccurate. However, existing works on knowledge editing are primarily conducted in a single language, which is inadequate for multilingual language models. In this paper, we focus on multilingual knowledge editing (MKE), which requires propagating updates across multiple languages. This necessity poses a significant challenge for the task. Furthermore, the limited availability of a comprehensive dataset for MKE exacerbates this challenge, hindering progress in this area. Hence, we introduce the Multilingual Knowledge Editing Benchmark (MKEB), a novel dataset comprising 12 languages and providing a complete evaluation framework. Additionally, we propose a method that enhances Multilingual knowledge Editing with neuron-Masked Low-Rank Adaptation (MEMLA). Specifically, we identify two categories of knowledge neurons to improve editing precision. Moreover, we perform LoRA-based editing with neuron masks to efficiently modify parameters and facilitate the propagation of updates across multiple languages. Experiments demonstrate that our method outperforms existing baselines and significantly enhances the multi-hop reasoning capability of the edited model, with minimal impact on its downstream task performance. The dataset and code will be made publicly available.

Large Language Models (LLMs) have become widely adopted recently. Research explores their use both as autonomous agents and as tools for software engineering. LLM-integrated applications, on the other hand, are software systems that leverage an LLM to perform tasks that would otherwise be impossible or require significant coding effort. While LLM-integrated application engineering is emerging as new discipline, its terminology, concepts and methods need to be established. This study provides a taxonomy for LLM-integrated applications, offering a framework for analyzing and describing these systems. It also demonstrates various ways to utilize LLMs in applications, as well as options for implementing such integrations. Following established methods, we analyze a sample of recent LLM-integrated applications to identify relevant dimensions. We evaluate the taxonomy by applying it to additional cases. This review shows that applications integrate LLMs in numerous ways for various purposes. Frequently, they comprise multiple LLM integrations, which we term ``LLM components''. To gain a clear understanding of an application's architecture, we examine each LLM component separately. We identify thirteen dimensions along which to characterize an LLM component, including the LLM skills leveraged, the format of the output, and more. LLM-integrated applications are described as combinations of their LLM components. We suggest a concise representation using feature vectors for visualization. The taxonomy is effective for describing LLM-integrated applications. It can contribute to theory building in the nascent field of LLM-integrated application engineering and aid in developing such systems. Researchers and practitioners explore numerous creative ways to leverage LLMs in applications. Though challenges persist, integrating LLMs may revolutionize the way software systems are built.

For a long time, humanity has pursued artificial intelligence (AI) equivalent to or surpassing the human level, with AI agents considered a promising vehicle for this pursuit. AI agents are artificial entities that sense their environment, make decisions, and take actions. Many efforts have been made to develop intelligent AI agents since the mid-20th century. However, these efforts have mainly focused on advancement in algorithms or training strategies to enhance specific capabilities or performance on particular tasks. Actually, what the community lacks is a sufficiently general and powerful model to serve as a starting point for designing AI agents that can adapt to diverse scenarios. Due to the versatile and remarkable capabilities they demonstrate, large language models (LLMs) are regarded as potential sparks for Artificial General Intelligence (AGI), offering hope for building general AI agents. Many research efforts have leveraged LLMs as the foundation to build AI agents and have achieved significant progress. We start by tracing the concept of agents from its philosophical origins to its development in AI, and explain why LLMs are suitable foundations for AI agents. Building upon this, we present a conceptual framework for LLM-based agents, comprising three main components: brain, perception, and action, and the framework can be tailored to suit different applications. Subsequently, we explore the extensive applications of LLM-based agents in three aspects: single-agent scenarios, multi-agent scenarios, and human-agent cooperation. Following this, we delve into agent societies, exploring the behavior and personality of LLM-based agents, the social phenomena that emerge when they form societies, and the insights they offer for human society. Finally, we discuss a range of key topics and open problems within the field.

北京阿比特科技有限公司