亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Dynamic feature selection, where we sequentially query features to make accurate predictions with a minimal budget, is a promising paradigm to reduce feature acquisition costs and provide transparency into the prediction process. The problem is challenging, however, as it requires both making predictions with arbitrary feature sets and learning a policy to identify the most valuable selections. Here, we take an information-theoretic perspective and prioritize features based on their mutual information with the response variable. The main challenge is learning this selection policy, and we design a straightforward new modeling approach that estimates the mutual information in a discriminative rather than generative fashion. Building on our learning approach, we introduce several further improvements: allowing variable feature budgets across samples, enabling non-uniform costs between features, incorporating prior information, and exploring modern architectures to handle partial input information. We find that our method provides consistent gains over recent state-of-the-art methods across a variety of datasets.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · Performer · DeepFakes · Better · 泛化理論 ·
2023 年 7 月 28 日

Recent advances in deep learning and computer vision have made the synthesis and counterfeiting of multimedia content more accessible than ever, leading to possible threats and dangers from malicious users. In the audio field, we are witnessing the growth of speech deepfake generation techniques, which solicit the development of synthetic speech detection algorithms to counter possible mischievous uses such as frauds or identity thefts. In this paper, we consider three different feature sets proposed in the literature for the synthetic speech detection task and present a model that fuses them, achieving overall better performances with respect to the state-of-the-art solutions. The system was tested on different scenarios and datasets to prove its robustness to anti-forensic attacks and its generalization capabilities.

In this paper, we propose a method for estimating model parameters using Small-Angle Scattering (SAS) data based on the Bayesian inference. Conventional SAS data analyses involve processes of manual parameter adjustment by analysts or optimization using gradient methods. These analysis processes tend to involve heuristic approaches and may lead to local solutions.Furthermore, it is difficult to evaluate the reliability of the results obtained by conventional analysis methods. Our method solves these problems by estimating model parameters as probability distributions from SAS data using the framework of the Bayesian inference. We evaluate the performance of our method through numerical experiments using artificial data of representative measurement target models.From the results of the numerical experiments, we show that our method provides not only high accuracy and reliability of estimation, but also perspectives on the transition point of estimability with respect to the measurement time and the lower bound of the angular domain of the measured data.

Confounding is a significant obstacle to unbiased estimation of causal effects from observational data. For settings with high-dimensional covariates -- such as text data, genomics, or the behavioral social sciences -- researchers have proposed methods to adjust for confounding by adapting machine learning methods to the goal of causal estimation. However, empirical evaluation of these adjustment methods has been challenging and limited. In this work, we build on a promising empirical evaluation strategy that simplifies evaluation design and uses real data: subsampling randomized controlled trials (RCTs) to create confounded observational datasets while using the average causal effects from the RCTs as ground-truth. We contribute a new sampling algorithm, which we call RCT rejection sampling, and provide theoretical guarantees that causal identification holds in the observational data to allow for valid comparisons to the ground-truth RCT. Using synthetic data, we show our algorithm indeed results in low bias when oracle estimators are evaluated on the confounded samples, which is not always the case for a previously proposed algorithm. In addition to this identification result, we highlight several finite data considerations for evaluation designers who plan to use RCT rejection sampling on their own datasets. As a proof of concept, we implement an example evaluation pipeline and walk through these finite data considerations with a novel, real-world RCT -- which we release publicly -- consisting of approximately 70k observations and text data as high-dimensional covariates. Together, these contributions build towards a broader agenda of improved empirical evaluation for causal estimation.

To improve the development of responsible AI systems, developers are increasingly utilizing tools such as checklists or guideline cards to ensure fairness, transparency, and sustainability. However, these tools face two main challenges. First, they are static and are not meant to keep pace with the latest responsible AI literature and international standards. Second, they tend to prioritize individual usage over fostering collaboration among AI practitioners. To overcome these limitations, we propose a method that enables easy updates of responsible AI guidelines by incorporating research papers and ISO standards, ensuring that the content remains relevant and up to date, while emphasizing actionable guidelines that can be implemented by a wide range of AI practitioners. We validated our method in a case study at a large tech company by designing and deploying a tool that recommends interactive and actionable guidelines, which were generated by a team of engineers, standardization experts, and a lawyer using our method. Through the study involving AI developers and engineers, we assessed the usability and effectiveness of the tool, showing that the guidelines were considered practical and actionable. The guidelines encouraged self-reflection and facilitated a better understanding of the ethical considerations of AI during the early stages of development, significantly contributing to the idea of "Responsible AI by Design" -- a design-first approach that considers responsible AI values throughout the development lifecycle and across business roles.

Non-linear model predictive control (nMPC) is a powerful approach to control complex robots (such as humanoids, quadrupeds, or unmanned aerial manipulators (UAMs)) as it brings important advantages over other existing techniques. The full-body dynamics, along with the prediction capability of the optimal control problem (OCP) solved at the core of the controller, allows to actuate the robot in line with its dynamics. This fact enhances the robot capabilities and allows, e.g., to perform intricate maneuvers at high dynamics while optimizing the amount of energy used. Despite the many similarities between humanoids or quadrupeds and UAMs, full-body torque-level nMPC has rarely been applied to UAMs. This paper provides a thorough description of how to use such techniques in the field of aerial manipulation. We give a detailed explanation of the different parts involved in the OCP, from the UAM dynamical model to the residuals in the cost function. We develop and compare three different nMPC controllers: Weighted MPC, Rail MPC, and Carrot MPC, which differ on the structure of their OCPs and on how these are updated at every time step. To validate the proposed framework, we present a wide variety of simulated case studies. First, we evaluate the trajectory generation problem, i.e., optimal control problems solved offline, involving different kinds of motions (e.g., aggressive maneuvers or contact locomotion) for different types of UAMs. Then, we assess the performance of the three nMPC controllers, i.e., closed-loop controllers solved online, through a variety of realistic simulations. For the benefit of the community, we have made available the source code related to this work.

Generative Adversarial Networks (GAN) have emerged as a formidable AI tool to generate realistic outputs based on training datasets. However, the challenge of exerting control over the generation process of GANs remains a significant hurdle. In this paper, we propose a novel methodology to address this issue by integrating a reinforcement learning (RL) agent with a latent-space GAN (l-GAN), thereby facilitating the generation of desired outputs. More specifically, we have developed an actor-critic RL agent with a meticulously designed reward policy, enabling it to acquire proficiency in navigating the latent space of the l-GAN and generating outputs based on specified tasks. To substantiate the efficacy of our approach, we have conducted a series of experiments employing the MNIST dataset, including arithmetic addition as an illustrative task. The outcomes of these experiments serve to validate our methodology. Our pioneering integration of an RL agent with a GAN model represents a novel advancement, holding great potential for enhancing generative networks in the future.

The provision of fire services plays a vital role in ensuring the safety of residents' lives and property. The spatial layout of fire stations is closely linked to the efficiency of fire rescue operations. Traditional approaches have primarily relied on mathematical planning models to generate appropriate layouts by summarizing relevant evaluation criteria. However, this optimization process presents significant challenges due to the extensive decision space, inherent conflicts among criteria, and decision-makers' preferences. To address these challenges, we propose FSLens, an interactive visual analytics system that enables in-depth evaluation and rational optimization of fire station layout. Our approach integrates fire records and correlation features to reveal fire occurrence patterns and influencing factors using spatiotemporal sequence forecasting. We design an interactive visualization method to explore areas within the city that are potentially under-resourced for fire service based on the fire distribution and existing fire station layout. Moreover, we develop a collaborative human-computer multi-criteria decision model that generates multiple candidate solutions for optimizing firefighting resources within these areas. We simulate and compare the impact of different solutions on the original layout through well-designed visualizations, providing decision-makers with the most satisfactory solution. We demonstrate the effectiveness of our approach through one case study with real-world datasets. The feedback from domain experts indicates that our system helps them to better identify and improve potential gaps in the current fire station layout.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

Recent advances in maximizing mutual information (MI) between the source and target have demonstrated its effectiveness in text generation. However, previous works paid little attention to modeling the backward network of MI (i.e., dependency from the target to the source), which is crucial to the tightness of the variational information maximization lower bound. In this paper, we propose Adversarial Mutual Information (AMI): a text generation framework which is formed as a novel saddle point (min-max) optimization aiming to identify joint interactions between the source and target. Within this framework, the forward and backward networks are able to iteratively promote or demote each other's generated instances by comparing the real and synthetic data distributions. We also develop a latent noise sampling strategy that leverages random variations at the high-level semantic space to enhance the long term dependency in the generation process. Extensive experiments based on different text generation tasks demonstrate that the proposed AMI framework can significantly outperform several strong baselines, and we also show that AMI has potential to lead to a tighter lower bound of maximum mutual information for the variational information maximization problem.

There has been appreciable progress in unsupervised network representation learning (UNRL) approaches over graphs recently with flexible random-walk approaches, new optimization objectives and deep architectures. However, there is no common ground for systematic comparison of embeddings to understand their behavior for different graphs and tasks. In this paper we theoretically group different approaches under a unifying framework and empirically investigate the effectiveness of different network representation methods. In particular, we argue that most of the UNRL approaches either explicitly or implicit model and exploit context information of a node. Consequently, we propose a framework that casts a variety of approaches -- random walk based, matrix factorization and deep learning based -- into a unified context-based optimization function. We systematically group the methods based on their similarities and differences. We study the differences among these methods in detail which we later use to explain their performance differences (on downstream tasks). We conduct a large-scale empirical study considering 9 popular and recent UNRL techniques and 11 real-world datasets with varying structural properties and two common tasks -- node classification and link prediction. We find that there is no single method that is a clear winner and that the choice of a suitable method is dictated by certain properties of the embedding methods, task and structural properties of the underlying graph. In addition we also report the common pitfalls in evaluation of UNRL methods and come up with suggestions for experimental design and interpretation of results.

北京阿比特科技有限公司