亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Crowd simulations play a pivotal role in building design, influencing both user experience and public safety. While traditional knowledge-driven models have their merits, data-driven crowd simulation models promise to bring a new dimension of realism to these simulations. However, most of the existing data-driven models are designed for specific geometries, leading to poor adaptability and applicability. A promising strategy for enhancing the adaptability and realism of data-driven crowd simulation models is to incorporate visual information, including the scenario geometry and pedestrian locomotion. Consequently, this paper proposes a novel visual-information-driven (VID) crowd simulation model. The VID model predicts the pedestrian velocity at the next time step based on the prior social-visual information and motion data of an individual. A radar-geometry-locomotion method is established to extract the visual information of pedestrians. Moreover, a temporal convolutional network (TCN)-based deep learning model, named social-visual TCN, is developed for velocity prediction. The VID model is tested on three public pedestrian motion datasets with distinct geometries, i.e., corridor, corner, and T-junction. Both qualitative and quantitative metrics are employed to evaluate the VID model, and the results highlight the improved adaptability of the model across all three geometric scenarios. Overall, the proposed method demonstrates effectiveness in enhancing the adaptability of data-driven crowd models.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 流形 · MoDELS · Performer · 不變 ·
2023 年 12 月 22 日

This paper presents the first application of the direct parametrisation method for invariant manifolds to a fully coupled multiphysics problem involving the nonlinear vibrations of deformable structures subjected to an electrostatic field. The formulation proposed is intended for model order reduction of electrostatically actuated resonating Micro-Electro-Mechanical Systems (MEMS). The continuous problem is first rewritten in a manner that can be directly handled by the parametrisation method, which relies upon automated asymptotic expansions. A new mixed fully Lagrangian formulation is thus proposed which contains only explicit polynomial nonlinearities, which is then discretised in the framework of finite element procedures. Validation is performed on the classical parallel plate configuration, where different formulations using either the general framework, or an approximation of the electrostatic field due to the geometric configuration selected, are compared. Reduced-order models along these formulations are also compared to full-order simulations operated with a time integration approach. Numerical results show a remarkable performance both in terms of accuracy and wealth of nonlinear effects that can be accounted for. In particular, the transition from hardening to softening behaviour of the primary resonance while increasing the constant voltage component of the electric actuation, is recovered. Secondary resonances leading to superharmonic and parametric resonances are also investigated with the reduced-order model.

We investigate interaction patterns for humans interacting with explainable and non-explainable robots. Non-explainable robots are here robots that do not explain their actions or non-actions, neither do they give any other feedback during interaction, in contrast to explainable robots. We video recorded and analyzed human behavior during a board game, where 20 humans verbally instructed either an explainable or non-explainable Pepper robot to move objects on the board. The transcriptions and annotations of the videos were transformed into transactions for association rule mining. Association rules discovered communication patterns in the interaction between the robots and the humans, and the most interesting rules were also tested with regular chi-square tests. Some statistically significant results are that there is a strong correlation between men and non-explainable robots and women and explainable robots, and that humans mirror some of the robot's modality. Our results also show that it is important to contextualize human interaction patterns, and that this can be easily done using association rules as an investigative tool. The presented results are important when designing robots that should adapt their behavior to become understandable for the interacting humans.

This work studies nonparametric Bayesian estimation of the intensity function of an inhomogeneous Poisson point process in the important case where the intensity depends on covariates, based on the observation of a single realisation of the point pattern over a large area. It is shown how the presence of covariates allows to borrow information from far away locations in the observation window, enabling consistent inference in the growing domain asymptotics. In particular, optimal posterior contraction rates under both global and point-wise loss functions are derived. The rates in global loss are obtained under conditions on the prior distribution resembling those in the well established theory of Bayesian nonparametrics, here combined with concentration inequalities for functionals of stationary processes to control certain random covariate-dependent loss functions appearing in the analysis. The local rates are derived with an ad-hoc study that builds on recent advances in the theory of P\'olya tree priors, extended to the present multivariate setting with a novel construction that makes use of the random geometry induced by the covariates.

Deep neural networks (DNNs) often fail silently with over-confident predictions on out-of-distribution (OOD) samples, posing risks in real-world deployments. Existing techniques predominantly emphasize either the feature representation space or the gradient norms computed with respect to DNN parameters, yet they overlook the intricate gradient distribution and the topology of classification regions. To address this gap, we introduce GRadient-aware Out-Of-Distribution detection in interpolated manifolds (GROOD), a novel framework that relies on the discriminative power of gradient space to distinguish between in-distribution (ID) and OOD samples. To build this space, GROOD relies on class prototypes together with a prototype that specifically captures OOD characteristics. Uniquely, our approach incorporates a targeted mix-up operation at an early intermediate layer of the DNN to refine the separation of gradient spaces between ID and OOD samples. We quantify OOD detection efficacy using the distance to the nearest neighbor gradients derived from the training set, yielding a robust OOD score. Experimental evaluations substantiate that the introduction of targeted input mix-upamplifies the separation between ID and OOD in the gradient space, yielding impressive results across diverse datasets. Notably, when benchmarked against ImageNet-1k, GROOD surpasses the established robustness of state-of-the-art baselines. Through this work, we establish the utility of leveraging gradient spaces and class prototypes for enhanced OOD detection for DNN in image classification.

This article deals with the location problem for balancing the service efficiency and equality. In public service systems, some people may feel envy in case that they need longer travel distance to access services than others. The strength of the envy can be measured by comparing one's travel distance to service facility with a threshold distance. Using the total envy function, four extended p-median problems are proposed for trade-off between service efficiency and equality. Five analytical properties of the new problems are mathematically proven. The new problems were tested on three sets of well-designed instances. The experimentation shows that the equality measures, such as the standard deviation, the mean absolute deviation, and the Gini coefficient between travel distances, can be substantially improved by minimizing the travel cost and the spatial envy. The experimentation also shows that, when the service supply is given in terms of the number of facilities, the service equality can be considerably improved by slightly increasing the travel distance. When the service supply is increased in terms of the number of facilities, both the service efficiency and spatial equality can be significantly improved.

Conventional computing paradigm struggles to fulfill the rapidly growing demands from emerging applications, especially those for machine intelligence, because much of the power and energy is consumed by constant data transfers between logic and memory modules. A new paradigm, called "computational random-access memory (CRAM)" has emerged to address this fundamental limitation. CRAM performs logic operations directly using the memory cells themselves, without having the data ever leave the memory. The energy and performance benefits of CRAM for both conventional and emerging applications have been well established by prior numerical studies. However, there lacks an experimental demonstration and study of CRAM to evaluate its computation accuracy, which is a realistic and application-critical metrics for its technological feasibility and competitiveness. In this work, a CRAM array based on magnetic tunnel junctions (MTJs) is experimentally demonstrated. First, basic memory operations as well as 2-, 3-, and 5-input logic operations are studied. Then, a 1-bit full adder with two different designs is demonstrated. Based on the experimental results, a suite of modeling has been developed to characterize the accuracy of CRAM computation. Further analysis of scalar addition, multiplication, and matrix multiplication shows promising results. These results are then applied to a complete application: a neural network based handwritten digit classifier, as an example to show the connection between the application performance and further MTJ development. The classifier achieved almost-perfect classification accuracy, with reasonable projections of future MTJ development. With the confirmation of MTJ-based CRAM's accuracy, there is a strong case that this technology will have a significant impact on power- and energy-demanding applications of machine intelligence.

The rise of mobility, IoT and wearables has shifted processing to the edge of the sensors, driven by the need to reduce latency, communication costs and overall energy consumption. While deep learning models have achieved remarkable results in various domains, their deployment at the edge for real-time applications remains computationally expensive. Neuromorphic computing emerges as a promising paradigm shift, characterized by co-localized memory and computing as well as event-driven asynchronous sensing and processing. In this work, we demonstrate the possibility of solving the ubiquitous computer vision task of object detection at the edge with low-power requirements, using the event-based N-Caltech101 dataset. We present the first instance of an on-chip spiking neural network for event-based face detection deployed on the SynSense Speck neuromorphic chip, which comprises both an event-based sensor and a spike-based asynchronous processor implementing Integrate-and-Fire neurons. We show how to reduce precision discrepancies between off-chip clock-driven simulation used for training and on-chip event-driven inference. This involves using a multi-spike version of the Integrate-and-Fire neuron on simulation, where spikes carry values that are proportional to the extent the membrane potential exceeds the firing threshold. We propose a robust strategy to train spiking neural networks with back-propagation through time using multi-spike activation and firing rate regularization and demonstrate how to decode output spikes into bounding boxes. We show that the power consumption of the chip is directly proportional to the number of synaptic operations in the spiking neural network, and we explore the trade-off between power consumption and detection precision with different firing rate regularization, achieving an on-chip face detection mAP[0.5] of ~0.6 while consuming only ~20 mW.

In large-scale systems there are fundamental challenges when centralised techniques are used for task allocation. The number of interactions is limited by resource constraints such as on computation, storage, and network communication. We can increase scalability by implementing the system as a distributed task-allocation system, sharing tasks across many agents. However, this also increases the resource cost of communications and synchronisation, and is difficult to scale. In this paper we present four algorithms to solve these problems. The combination of these algorithms enable each agent to improve their task allocation strategy through reinforcement learning, while changing how much they explore the system in response to how optimal they believe their current strategy is, given their past experience. We focus on distributed agent systems where the agents' behaviours are constrained by resource usage limits, limiting agents to local rather than system-wide knowledge. We evaluate these algorithms in a simulated environment where agents are given a task composed of multiple subtasks that must be allocated to other agents with differing capabilities, to then carry out those tasks. We also simulate real-life system effects such as networking instability. Our solution is shown to solve the task allocation problem to 6.7% of the theoretical optimal within the system configurations considered. It provides 5x better performance recovery over no-knowledge retention approaches when system connectivity is impacted, and is tested against systems up to 100 agents with less than a 9% impact on the algorithms' performance.

We present ResMLP, an architecture built entirely upon multi-layer perceptrons for image classification. It is a simple residual network that alternates (i) a linear layer in which image patches interact, independently and identically across channels, and (ii) a two-layer feed-forward network in which channels interact independently per patch. When trained with a modern training strategy using heavy data-augmentation and optionally distillation, it attains surprisingly good accuracy/complexity trade-offs on ImageNet. We will share our code based on the Timm library and pre-trained models.

Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: //github.com/holgerroth/3Dunet_abdomen_cascade.

北京阿比特科技有限公司