We investigate interaction patterns for humans interacting with explainable and non-explainable robots. Non-explainable robots are here robots that do not explain their actions or non-actions, neither do they give any other feedback during interaction, in contrast to explainable robots. We video recorded and analyzed human behavior during a board game, where 20 humans verbally instructed either an explainable or non-explainable Pepper robot to move objects on the board. The transcriptions and annotations of the videos were transformed into transactions for association rule mining. Association rules discovered communication patterns in the interaction between the robots and the humans, and the most interesting rules were also tested with regular chi-square tests. Some statistically significant results are that there is a strong correlation between men and non-explainable robots and women and explainable robots, and that humans mirror some of the robot's modality. Our results also show that it is important to contextualize human interaction patterns, and that this can be easily done using association rules as an investigative tool. The presented results are important when designing robots that should adapt their behavior to become understandable for the interacting humans.
Longitudinal characterization of cognitive change in late-life has received increasing attention to better understand age-related cognitive aging and cognitive changes reflecting pathology-related and mortality-related processes. Several mixed-effects models have been proposed to accommodate the non-linearity of cognitive decline and assess the putative influence of covariates on it. In this work, we examine the standard linear mixed model (LMM) with a linear function of time and five alternative models capturing non-linearity of change over time, including the LMM with a quadratic term, LMM with splines, the functional mixed model, the piecewise linear mixed model and the sigmoidal mixed model. We first theoretically describe the models. Next, using data from deceased participants from two prospective cohorts with annual cognitive testing, we compared the interpretation of the models by investigating the association of education on cognitive change before death. Finally, we performed a simulation study to empirically evaluate the models and provide practical recommendations. In particular, models were challenged by increasing follow-up spacing, increasing missing data, and decreasing sample size. With the exception of the LMM with a quadratic term, the fit of all models was generally adequate to capture non-linearity of cognitive change and models were relatively robust. Although spline-based models do not have interpretable nonlinearity parameters, their convergence was easier to achieve and they allow for graphical interpretation. In contrast the piecewise and the sigmoidal models, with interpretable non-linear parameters may require more data to achieve convergence.
We present a study on asymptotically compatible Galerkin discretizations for a class of parametrized nonlinear variational problems. The abstract analytical framework is based on variational convergence, or Gamma-convergence. We demonstrate the broad applicability of the theoretical framework by developing asymptotically compatible finite element discretizations of some representative nonlinear nonlocal variational problems on a bounded domain. These include nonlocal nonlinear problems with classically-defined, local boundary constraints through heterogeneous localization at the boundary, as well as nonlocal problems posed on parameter-dependent domains.
In the present work, the applicability of physics-augmented neural network (PANN) constitutive models for complex electro-elastic finite element analysis is demonstrated. For the investigations, PANN models for electro-elastic material behavior at finite deformations are calibrated to different synthetically generated datasets, including an analytical isotropic potential, a homogenised rank-one laminate, and a homogenised metamaterial with a spherical inclusion. Subsequently, boundary value problems inspired by engineering applications of composite electro-elastic materials are considered. Scenarios with large electrically induced deformations and instabilities are particularly challenging and thus necessitate extensive investigations of the PANN constitutive models in the context of finite element analyses. First of all, an excellent prediction quality of the model is required for very general load cases occurring in the simulation. Furthermore, simulation of large deformations and instabilities poses challenges on the stability of the numerical solver, which is closely related to the constitutive model. In all cases studied, the PANN models yield excellent prediction qualities and a stable numerical behavior even in highly nonlinear scenarios. This can be traced back to the PANN models excellent performance in learning both the first and second derivatives of the ground truth electro-elastic potentials, even though it is only calibrated on the first derivatives. Overall, this work demonstrates the applicability of PANN constitutive models for the efficient and robust simulation of engineering applications of composite electro-elastic materials.
We introduce a novel continual learning method based on multifidelity deep neural networks. This method learns the correlation between the output of previously trained models and the desired output of the model on the current training dataset, limiting catastrophic forgetting. On its own the multifidelity continual learning method shows robust results that limit forgetting across several datasets. Additionally, we show that the multifidelity method can be combined with existing continual learning methods, including replay and memory aware synapses, to further limit catastrophic forgetting. The proposed continual learning method is especially suited for physical problems where the data satisfy the same physical laws on each domain, or for physics-informed neural networks, because in these cases we expect there to be a strong correlation between the output of the previous model and the model on the current training domain.
Liquid droplet dynamics are widely used in biological and engineering applications, which contain complex interfacial instabilities and pattern formulation such as droplet merging, splitting, and transport. This paper studies a class of mean field control formulation towards these droplet dynamics. They are used to control and maintain the manipulation of droplets in applications. We first formulate the droplet dynamics as gradient flows of free energies in modified optimal transport metrics with nonlinear mobilities. We then design an optimal control problem for these gradient flows. We lastly apply the primal-dual hybrid gradient algorithm with high-order finite element methods to simulate the proposed mean field control problems. Numerical examples, including droplet formation, bead-up/spreading, transport, and merging/splitting on a two-dimensional spatial domain, demonstrate the effectiveness of the proposed mean field control mechanism.
The comparison of frequency distributions is a common statistical task with broad applications and a long history of methodological development. However, existing measures do not quantify the magnitude and direction by which one distribution is shifted relative to another. In the present study, we define distributional shift (DS) as the concentration of frequencies away from the greatest discrete class, e.g., a histogram's right-most bin. We derive a measure of DS based on the sum of cumulative frequencies, intuitively quantifying shift as a statistical moment. We then define relative distributional shift (RDS) as the difference in DS between distributions. Using simulated random sampling, we demonstrate that RDS is highly related to measures that are popularly used to compare frequency distributions. Focusing on a specific use case, i.e., simulated healthcare Evaluation and Management coding profiles, we show how RDS can be used to examine many pairs of empirical and expected distributions via shift-significance plots. In comparison to other measures, RDS has the unique advantage of being a signed (directional) measure based on a simple difference in an intuitive property.
We introduce a method for computing immediately human interpretable yet accurate classifiers from tabular data. The classifiers obtained are short DNF-formulas, computed via first discretizing the original data to Boolean form and then using feature selection coupled with a very fast algorithm for producing the best possible Boolean classifier for the setting. We demonstrate the approach via 14 experiments, obtaining results with accuracies mainly similar to ones obtained via random forests, XGBoost, and existing results for the same datasets in the literature. In several cases, our approach in fact outperforms the reference results in relation to accuracy, even though the main objective of our study is the immediate interpretability of our classifiers. We also prove a new result on the probability that the classifier we obtain from real-life data corresponds to the ideally best classifier with respect to the background distribution the data comes from.
We propose a new loss function for supervised and physics-informed training of neural networks and operators that incorporates a posteriori error estimate. More specifically, during the training stage, the neural network learns additional physical fields that lead to rigorous error majorants after a computationally cheap postprocessing stage. Theoretical results are based upon the theory of functional a posteriori error estimates, which allows for the systematic construction of such loss functions for a diverse class of practically relevant partial differential equations. From the numerical side, we demonstrate on a series of elliptic problems that for a variety of architectures and approaches (physics-informed neural networks, physics-informed neural operators, neural operators, and classical architectures in the regression and physics-informed settings), we can reach better or comparable accuracy and in addition to that cheaply recover high-quality upper bounds on the error after training.
Objective: Prediction models are popular in medical research and practice. By predicting an outcome of interest for specific patients, these models may help inform difficult treatment decisions, and are often hailed as the poster children for personalized, data-driven healthcare. Many prediction models are deployed for decision support based on their prediction accuracy in validation studies. We investigate whether this is a safe and valid approach. Materials and Methods: We show that using prediction models for decision making can lead to harmful decisions, even when the predictions exhibit good discrimination after deployment. These models are harmful self-fulfilling prophecies: their deployment harms a group of patients but the worse outcome of these patients does not invalidate the predictive power of the model. Results: Our main result is a formal characterization of a set of such prediction models. Next we show that models that are well calibrated before and after deployment are useless for decision making as they made no change in the data distribution. Discussion: Our results point to the need to revise standard practices for validation, deployment and evaluation of prediction models that are used in medical decisions. Conclusion: Outcome prediction models can yield harmful self-fulfilling prophecies when used for decision making, a new perspective on prediction model development, deployment and monitoring is needed.
We formulate a uniform tail bound for empirical processes indexed by a class of functions, in terms of the individual deviations of the functions rather than the worst-case deviation in the considered class. The tail bound is established by introducing an initial "deflation" step to the standard generic chaining argument. The resulting tail bound is the sum of the complexity of the "deflated function class" in terms of a generalization of Talagrand's $\gamma$ functional, and the deviation of the function instance, both of which are formulated based on the natural seminorm induced by the corresponding Cram\'{e}r functions. We also provide certain approximations for the mentioned seminorm when the function class lies in a given (exponential type) Orlicz space, that can be used to make the complexity term and the deviation term more explicit.