In-context learning (ICL) is now a common method for teaching large language models (LLMs) new tasks: given labeled examples in the input context, the LLM learns to perform the task without weight updates. Do models guided via ICL infer the underlying structure of the task defined by the context, or do they rely on superficial heuristics that only generalize to identically distributed examples? We address this question using transformations tasks and an NLI task that assess sensitivity to syntax - a requirement for robust language understanding. We further investigate whether out-of-distribution generalization can be improved via chain-of-thought prompting, where the model is provided with a sequence of intermediate computation steps that illustrate how the task ought to be performed. In experiments with models from the GPT, PaLM, and Llama 2 families, we find large variance across LMs. The variance is explained more by the composition of the pre-training corpus and supervision methods than by model size; in particular, models pre-trained on code generalize better, and benefit more from chain-of-thought prompting.
Large language models (LLM) based end-to-end task-oriented dialog (TOD) systems built using few-shot (in-context) learning perform better than supervised models only when the train data is limited. This is due to the inherent ability of LLMs to learn any task with just a few demonstrations. As the number of train dialogs increases, supervised SoTA models surpass in-context learning LLMs as they learn to better align with the style of the system responses in the training data, which LLMs struggle to mimic. In response, we propose SyncTOD, which synergizes LLMs with useful hints about the task for improved alignment. At a high level, SyncTOD trains auxiliary models to provide these hints and select exemplars for the in-context prompts. With ChatGPT, SyncTOD achieves superior performance compared to LLM-based baselines and SoTA models in low-data settings, while retaining competitive performance in full-data settings
Finetuning large language models (LLMs) in federated learning (FL) settings has become important as it allows resource-constrained devices to finetune a model using private data. However, finetuning LLMs using backpropagation requires excessive memory (especially from intermediate activations) for resource-constrained devices. While Forward-mode Auto-Differentiation (AD) can reduce memory footprint from activations, we observe that directly applying it to LLM finetuning results in slow convergence and poor accuracy. This work introduces Spry, an FL algorithm that splits trainable weights of an LLM among participating clients, such that each client computes gradients using Forward-mode AD that are closer estimates of the true gradients. Spry achieves a low memory footprint, high accuracy, and fast convergence. We theoretically show that the global gradients in Spry are unbiased estimates of true global gradients for homogeneous data distributions across clients, while heterogeneity increases bias of the estimates. We also derive Spry's convergence rate, showing that the gradients decrease inversely proportional to the number of FL rounds, indicating the convergence up to the limits of heterogeneity. Empirically, Spry reduces the memory footprint during training by 1.4-7.1$\times$ in contrast to backpropagation, while reaching comparable accuracy, across a wide range of language tasks, models, and FL settings. Spry reduces the convergence time by 1.2-20.3$\times$ and achieves 5.2-13.5\% higher accuracy against state-of-the-art zero-order methods. When finetuning Llama2-7B with LoRA, compared to the peak memory usage of 33.9GB of backpropagation, Spry only consumes 6.2GB of peak memory. For OPT13B, the reduction is from 76.5GB to 10.8GB. Spry makes feasible previously impossible FL deployments on commodity mobile and edge devices. Source code is available at //github.com/Astuary/Spry.
Recent Transformer-based large language models (LLMs) demonstrate in-context learning ability to perform various functions based solely on the provided context, without updating model parameters. To fully utilize the in-context capabilities in time series forecasting (TSF) problems, unlike previous Transformer-based or LLM-based time series forecasting methods, we reformulate "time series forecasting tasks" as input tokens by constructing a series of (lookback, future) pairs within the tokens. This method aligns more closely with the inherent in-context mechanisms, and is more parameter-efficient without the need of using pre-trained LLM parameters. Furthermore, it addresses issues such as overfitting in existing Transformer-based TSF models, consistently achieving better performance across full-data, few-shot, and zero-shot settings compared to previous architectures.
Detection of out-of-distribution (OOD) samples is crucial for safe real-world deployment of machine learning models. Recent advances in vision language foundation models have made them capable of detecting OOD samples without requiring in-distribution (ID) images. However, these zero-shot methods often underperform as they do not adequately consider ID class likelihoods in their detection confidence scoring. Hence, we introduce CLIPScope, a zero-shot OOD detection approach that normalizes the confidence score of a sample by class likelihoods, akin to a Bayesian posterior update. Furthermore, CLIPScope incorporates a novel strategy to mine OOD classes from a large lexical database. It selects class labels that are farthest and nearest to ID classes in terms of CLIP embedding distance to maximize coverage of OOD samples. We conduct extensive ablation studies and empirical evaluations, demonstrating state of the art performance of CLIPScope across various OOD detection benchmarks.
In-context Learning (ICL) empowers large language models (LLMs) to adapt to unseen tasks during inference by prefixing a few demonstration examples prior to test queries. Despite its versatility, ICL incurs substantial computational and memory overheads compared to zero-shot learning and is susceptible to the selection and order of demonstration examples. In this work, we introduce Implicit In-context Learning (I2CL), an innovative paradigm that addresses the challenges associated with traditional ICL by absorbing demonstration examples within the activation space. I2CL first generates a condensed vector representation, namely a context vector, from the demonstration examples. It then integrates the context vector during inference by injecting a linear combination of the context vector and query activations into the model's residual streams. Empirical evaluation on nine real-world tasks across three model architectures demonstrates that I2CL achieves few-shot performance with zero-shot cost and exhibits robustness against the variation of demonstration examples. Furthermore, I2CL facilitates a novel representation of "task-ids", enhancing task similarity detection and enabling effective transfer learning. We provide a comprehensive analysis of I2CL, offering deeper insights into its mechanisms and broader implications for ICL. The source code is available at: //github.com/LzVv123456/I2CL.
We introduce Integer Scale, a novel post-training quantization scheme for large language models that effectively resolves the inference bottleneck in current fine-grained quantization approaches while maintaining similar accuracies. Integer Scale is a free lunch as it requires no extra calibration or fine-tuning which will otherwise incur additional costs. It can be used plug-and-play for most fine-grained quantization methods. Its integration results in at most 1.85x end-to-end speed boost over the original counterpart with comparable accuracy. Additionally, due to the orchestration of the proposed Integer Scale and fine-grained quantization, we resolved the quantization difficulty for Mixtral-8x7B and LLaMA-3 models with negligible performance degradation, and it comes with an end-to-end speed boost of 2.13x, and 2.31x compared with their FP16 versions respectively.
Recent large language models (LLMs) have witnessed significant advancement in various tasks, including mathematical reasoning and theorem proving. As these two tasks require strict and formal multi-step inference, they are appealing domains for exploring the reasoning ability of LLMs but still face important challenges. Previous studies such as Chain-of-Thought (CoT) have revealed the effectiveness of intermediate steps guidance. However, such step-wise annotation requires heavy labor, leading to insufficient training steps for current benchmarks. To fill this gap, this work introduces MUSTARD, a data generation framework that masters uniform synthesis of theorem and proof data of high quality and diversity. MUSTARD synthesizes data in three stages: (1) It samples a few mathematical concept seeds as the problem category. (2) Then, it prompts a generative language model with the sampled concepts to obtain both the problems and their step-wise formal solutions. (3) Lastly, the framework utilizes a proof assistant (e.g., Lean Prover) to filter the valid proofs. With the proposed MUSTARD, we present a theorem-and-proof benchmark MUSTARDSAUCE with 5,866 valid data points. Each data point contains an informal statement, an informal proof, and a translated formal proof that passes the prover validation. We perform extensive analysis and demonstrate that MUSTARD generates validated high-quality step-by-step data. We further apply the MUSTARDSAUCE for fine-tuning smaller language models. The fine-tuned Llama 2-7B achieves a 15.41% average relative performance gain in automated theorem proving, and 8.18% in math word problems. Codes and data are available at //github.com/Eleanor-H/MUSTARD.
Machine learning (ML) models are increasingly used in various applications, from recommendation systems in e-commerce to diagnosis prediction in healthcare. In this paper, we present a novel dynamic framework for thinking about the deployment of ML models in a performative, human-ML collaborative system. In our framework, the introduction of ML recommendations changes the data generating process of human decisions, which are only a proxy to the ground truth and which are then used to train future versions of the model. We show that this dynamic process in principle can converge to different stable points, i.e. where the ML model and the Human+ML system have the same performance. Some of these stable points are suboptimal with respect to the actual ground truth. We conduct an empirical user study with 1,408 participants to showcase this process. In the study, humans solve instances of the knapsack problem with the help of machine learning predictions. This is an ideal setting because we can see how ML models learn to imitate human decisions and how this learning process converges to a stable point. We find that for many levels of ML performance, humans can improve the ML predictions to dynamically reach an equilibrium performance that is around 92% of the maximum knapsack value. We also find that the equilibrium performance could be even higher if humans rationally followed the ML recommendations. Finally, we test whether monetary incentives can increase the quality of human decisions, but we fail to find any positive effect. Our results have practical implications for the deployment of ML models in contexts where human decisions may deviate from the indisputable ground truth.
Pre-trained models learn contextualized word representations on large-scale text corpus through a self-supervised learning method, which has achieved promising performance after fine-tuning. These models, however, suffer from poor robustness and lack of interpretability. Pre-trained models with knowledge injection, which we call knowledge enhanced pre-trained models (KEPTMs), possess deep understanding and logical reasoning and introduce interpretability to some extent. In this survey, we provide a comprehensive overview of KEPTMs for natural language processing. We first introduce the progress of pre-trained models and knowledge representation learning. Then we systematically categorize existing KEPTMs from three different perspectives. Finally, we outline some potential directions of KEPTMs for future research.
State-of-the-art Convolutional Neural Network (CNN) benefits a lot from multi-task learning (MTL), which learns multiple related tasks simultaneously to obtain shared or mutually related representations for different tasks. The most widely-used MTL CNN structure is based on an empirical or heuristic split on a specific layer (e.g., the last convolutional layer) to minimize different task-specific losses. However, this heuristic sharing/splitting strategy may be harmful to the final performance of one or multiple tasks. In this paper, we propose a novel CNN structure for MTL, which enables automatic feature fusing at every layer. Specifically, we first concatenate features from different tasks according to their channel dimension, and then formulate the feature fusing problem as discriminative dimensionality reduction. We show that this discriminative dimensionality reduction can be done by 1x1 Convolution, Batch Normalization, and Weight Decay in one CNN, which we refer to as Neural Discriminative Dimensionality Reduction (NDDR). We perform ablation analysis in details for different configurations in training the network. The experiments carried out on different network structures and different task sets demonstrate the promising performance and desirable generalizability of our proposed method.