亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper investigates a hitherto unaddressed aspect of best arm identification (BAI) in stochastic multi-armed bandits in the fixed-confidence setting. Two key metrics for assessing bandit algorithms are computational efficiency and performance optimality (e.g., in sample complexity). In stochastic BAI literature, there have been advances in designing algorithms to achieve optimal performance, but they are generally computationally expensive to implement (e.g., optimization-based methods). There also exist approaches with high computational efficiency, but they have provable gaps to the optimal performance (e.g., the $\beta$-optimal approaches in top-two methods). This paper introduces a framework and an algorithm for BAI that achieves optimal performance with a computationally efficient set of decision rules. The central process that facilitates this is a routine for sequentially estimating the optimal allocations up to sufficient fidelity. Specifically, these estimates are accurate enough for identifying the best arm (hence, achieving optimality) but not overly accurate to an unnecessary extent that creates excessive computational complexity (hence, maintaining efficiency). Furthermore, the existing relevant literature focuses on the family of exponential distributions. This paper considers a more general setting of any arbitrary family of distributions parameterized by their mean values (under mild regularity conditions). The optimality is established analytically, and numerical evaluations are provided to assess the analytical guarantees and compare the performance with those of the existing ones.

相關內容

Advanced packaging offers a new design paradigm in the post-Moore era, where many small chiplets can be assembled into a large system. Based on heterogeneous integration, a chiplet-based accelerator can be highly specialized for a specific workload, demonstrating extreme efficiency and cost reduction. To fully leverage this potential, it is critical to explore both the architectural design space for individual chiplets and different integration options to assemble these chiplets, which have yet to be fully exploited by existing proposals. This paper proposes Monad, a cost-aware specialization approach for chiplet-based spatial accelerators that explores the tradeoffs between PPA and fabrication costs. To evaluate a specialized system, we introduce a modeling framework considering the non-uniformity in dataflow, pipelining, and communications when executing multiple tensor workloads on different chiplets. We propose to combine the architecture and integration design space by uniformly encoding the design aspects for both spaces and exploring them with a systematic ML-based approach. The experiments demonstrate that Monad can achieve an average of 16% and 30% EDP reduction compared with the state-of-the-art chiplet-based accelerators, Simba and NN-Baton, respectively.

Statistical models are at the heart of any empirical study for hypothesis testing. We present a new cross-platform Python-based package which employs different likelihood prescriptions through a plug-in system. This framework empowers users to propose, examine, and publish new likelihood prescriptions without developing software infrastructure, ultimately unifying and generalising different ways of constructing likelihoods and employing them for hypothesis testing, all in one place. Within this package, we propose a new simplified likelihood prescription that surpasses its predecessors' approximation accuracy by incorporating asymmetric uncertainties. Furthermore, our package facilitates the inclusion of various likelihood combination routines, thereby broadening the scope of independent studies through a meta-analysis. By remaining agnostic to the source of the likelihood prescription and the signal hypothesis generator, our platform allows for the seamless implementation of packages with different likelihood prescriptions, fostering compatibility and interoperability.

We analyze connections between two low rank modeling approaches from the last decade for treating dynamical data. The first one is the coherence problem (or coherent set approach), where groups of states are sought that evolve under the action of a stochastic matrix in a way maximally distinguishable from other groups. The second one is a low rank factorization approach for stochastic matrices, called Direct Bayesian Model Reduction (DBMR), which estimates the low rank factors directly from observed data. We show that DBMR results in a low rank model that is a projection of the full model, and exploit this insight to infer bounds on a quantitative measure of coherence within the reduced model. Both approaches can be formulated as optimization problems, and we also prove a bound between their respective objectives. On a broader scope, this work relates the two classical loss functions of nonnegative matrix factorization, namely the Frobenius norm and the generalized Kullback--Leibler divergence, and suggests new links between likelihood-based and projection-based estimation of probabilistic models.

We study a class of McKean--Vlasov Stochastic Differential Equations (MV-SDEs) with drifts and diffusions having super-linear growth in measure and space -- the maps have general polynomial form but also satisfy a certain monotonicity condition. The combination of the drift's super-linear growth in measure (by way of a convolution) and the super-linear growth in space and measure of the diffusion coefficient require novel technical elements in order to obtain the main results. We establish wellposedness, propagation of chaos (PoC), and under further assumptions on the model parameters we show an exponential ergodicity property alongside the existence of an invariant distribution. No differentiability or non-degeneracy conditions are required. Further, we present a particle system based Euler-type split-step scheme (SSM) for the simulation of this type of MV-SDEs. The scheme attains, in stepsize, the strong error rate $1/2$ in the non-path-space root-mean-square error metric and we demonstrate the property of mean-square contraction. Our results are illustrated by numerical examples including: estimation of PoC rates across dimensions, preservation of periodic phase-space, and the observation that taming appears to be not a suitable method unless strong dissipativity is present.

The dual consistency is an important issue in developing stable DWR error estimation towards the goal-oriented mesh adaptivity. In this paper, such an issue is studied in depth based on a Newton-GMG framework for the steady Euler equations. Theoretically, the numerical framework is redescribed using the Petrov-Galerkin scheme, based on which the dual consistency is depicted. A boundary modification technique is discussed for preserving the dual consistency within the Newton-GMG framework. Numerically, a geometrical multigrid is proposed for solving the dual problem, and a regularization term is designed to guarantee the convergence of the iteration. The following features of our method can be observed from numerical experiments, i). a stable numerical convergence of the quantity of interest can be obtained smoothly for problems with different configurations, and ii). towards accurate calculation of quantity of interest, mesh grids can be saved significantly using the proposed dual-consistent DWR method, compared with the dual-inconsistent one.

In this study, we propose using an over-the-air computation (OAC) scheme for the federated k-means clustering algorithm to reduce the per-round communication latency when it is implemented over a wireless network. The OAC scheme relies on an encoder exploiting the representation of a number in a balanced number system and computes the sum of the updates for the federated k-means via signal superposition property of wireless multiple-access channels non-coherently to eliminate the need for precise phase and time synchronization. Also, a reinitialization method for ineffectively used centroids is proposed to improve the performance of the proposed method for heterogeneous data distribution. For a customer-location clustering scenario, we demonstrate the performance of the proposed algorithm and compare it with the standard k-means clustering. Our results show that the proposed approach performs similarly to the standard k-means while reducing communication latency.

We propose a matrix-free parallel two-level-deflation preconditioner combined with the Complex Shifted Laplacian preconditioner(CSLP) for the two-dimensional Helmholtz problems. The Helmholtz equation is widely studied in seismic exploration, antennas, and medical imaging. It is one of the hardest problems to solve both in terms of accuracy and convergence, due to scalability issues of the numerical solvers. Motivated by the observation that for large wavenumbers, the eigenvalues of the CSLP-preconditioned system shift towards zero, deflation with multigrid vectors, and further high-order vectors were incorporated to obtain wave-number-independent convergence. For large-scale applications, high-performance parallel scalable methods are also indispensable. In our method, we consider the preconditioned Krylov subspace methods for solving the linear system obtained from finite-difference discretization. The CSLP preconditioner is approximated by one parallel geometric multigrid V-cycle. For the two-level deflation, the matrix-free Galerkin coarsening as well as high-order re-discretization approaches on the coarse grid are studied. The results of matrix-vector multiplications in Krylov subspace methods and the interpolation/restriction operators are implemented based on the finite-difference grids without constructing any coefficient matrix. These adjustments lead to direct improvements in terms of memory consumption. Numerical experiments of model problems show that wavenumber independence has been obtained for medium wavenumbers. The matrix-free parallel framework shows satisfactory weak and strong parallel scalability.

The goal of explainable Artificial Intelligence (XAI) is to generate human-interpretable explanations, but there are no computationally precise theories of how humans interpret AI generated explanations. The lack of theory means that validation of XAI must be done empirically, on a case-by-case basis, which prevents systematic theory-building in XAI. We propose a psychological theory of how humans draw conclusions from saliency maps, the most common form of XAI explanation, which for the first time allows for precise prediction of explainee inference conditioned on explanation. Our theory posits that absent explanation humans expect the AI to make similar decisions to themselves, and that they interpret an explanation by comparison to the explanations they themselves would give. Comparison is formalized via Shepard's universal law of generalization in a similarity space, a classic theory from cognitive science. A pre-registered user study on AI image classifications with saliency map explanations demonstrate that our theory quantitatively matches participants' predictions of the AI.

Artificial Intelligence (AI) is rapidly becoming integrated into military Command and Control (C2) systems as a strategic priority for many defence forces. The successful implementation of AI is promising to herald a significant leap in C2 agility through automation. However, realistic expectations need to be set on what AI can achieve in the foreseeable future. This paper will argue that AI could lead to a fragility trap, whereby the delegation of C2 functions to an AI could increase the fragility of C2, resulting in catastrophic strategic failures. This calls for a new framework for AI in C2 to avoid this trap. We will argue that antifragility along with agility should form the core design principles for AI-enabled C2 systems. This duality is termed Agile, Antifragile, AI-Enabled Command and Control (A3IC2). An A3IC2 system continuously improves its capacity to perform in the face of shocks and surprises through overcompensation from feedback during the C2 decision-making cycle. An A3IC2 system will not only be able to survive within a complex operational environment, it will also thrive, benefiting from the inevitable shocks and volatility of war.

Click-through rate (CTR) prediction plays a critical role in recommender systems and online advertising. The data used in these applications are multi-field categorical data, where each feature belongs to one field. Field information is proved to be important and there are several works considering fields in their models. In this paper, we proposed a novel approach to model the field information effectively and efficiently. The proposed approach is a direct improvement of FwFM, and is named as Field-matrixed Factorization Machines (FmFM, or $FM^2$). We also proposed a new explanation of FM and FwFM within the FmFM framework, and compared it with the FFM. Besides pruning the cross terms, our model supports field-specific variable dimensions of embedding vectors, which acts as soft pruning. We also proposed an efficient way to minimize the dimension while keeping the model performance. The FmFM model can also be optimized further by caching the intermediate vectors, and it only takes thousands of floating-point operations (FLOPs) to make a prediction. Our experiment results show that it can out-perform the FFM, which is more complex. The FmFM model's performance is also comparable to DNN models which require much more FLOPs in runtime.

北京阿比特科技有限公司