亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider the problem of autonomous navigation using limited information from a remote sensor network. Because the remote sensors are power and bandwidth limited, we use event-triggered (ET) estimation to manage communication costs. We introduce a fast and efficient sampling-based planner which computes motion plans coupled with ET communication strategies that minimize communication costs, while satisfying constraints on the probability of reaching the goal region and the point-wise probability of collision. We derive a novel method for offline propagation of the expected state distribution, and corresponding bounds on this distribution. These bounds are used to evaluate the chance constraints in the algorithm. Case studies establish the validity of our approach, demonstrating fast computation of optimal plans.

相關內容

This letter addresses the problem of trajectory planning in a marsupial robotic system consisting of an unmanned aerial vehicle (UAV) linked to an unmanned ground vehicle (UGV) through a non-taut tether withcontrollable length. To the best of our knowledge, this is the first method that addresses the trajectory planning of a marsupial UGV-UAV with a non-taut tether. The objective is to determine a synchronized collision-free trajectory for the three marsupial system agents: UAV, UGV, and tether. First, we present a path planning solution based on optimal Rapidly-exploring Random Trees (RRT*) with novel sampling and steering techniques to speed-up the computation. This algorithm is able to obtain collision-free paths for the UAV and the UGV, taking into account the 3D environment and the tether. Then, the paper presents a trajectory planner based on non-linear least squares. The optimizer takes into account aspects not considered in the path planning, like temporal constraints of the motion imposed by limits on the velocities and accelerations of the robots , or raising the tether's clearance. Simulated and field test results demonstrate that the approach generates obstacle-free, smooth, and feasible trajectories for the marsupial system.

In many fields of biomedical sciences, it is common that random variables are measured repeatedly across different subjects. In such a repeated measurement setting, dependence structures among random variables that are between subjects and within a subject may differ and should be estimated differently. Ignoring this fact may lead to questionable or even erroneous scientific conclusions. In this paper, we study the problem of sparse and positive-definite estimation of between-subject and within-subject covariance matrices for high-dimensional repeated measurements. Our estimators are defined as solutions to convex optimization problems that can be solved efficiently. We establish estimation error rates for our proposed estimators of the two target matrices, and demonstrate their favorable performance through theoretical analysis and comprehensive simulation studies. We further apply our methods to recover two covariance graphs of clinical variables from hemodialysis patients.

Recent developments in robotic and sensor hardware make data collection with mobile robots (ground or aerial) feasible and affordable to a wide population of users. The newly emergent applications, such as precision agriculture, weather damage assessment, or personal home security often do not satisfy the simplifying assumptions made by previous research: the explored areas have complex shapes and obstacles, multiple phenomena need to be sensed and estimated simultaneously and the measured quantities might change during observations. The future progress of path planning and estimation algorithms requires a new generation of benchmarks that provide representative environments and scoring methods that capture the demands of these applications. This paper describes the Waterberry Farms benchmark (WBF) that models a precision agriculture application at a Florida farm growing multiple crop types. The benchmark captures the dynamic nature of the spread of plant diseases and variations of soil humidity while the scoring system measures the performance of a given combination of a movement policy and an information model estimator. By benchmarking several examples of representative path planning and estimator algorithms, we demonstrate WBF's ability to provide insight into their properties and quantify future progress.

When an exposure of interest is confounded by unmeasured factors, an instrumental variable (IV) can be used to identify and estimate certain causal contrasts. Identification of the marginal average treatment effect (ATE) from IVs relies on strong untestable structural assumptions. When one is unwilling to assert such structure, IVs can nonetheless be used to construct bounds on the ATE. Famously, Balke and Pearl (1997) proved tight bounds on the ATE for a binary outcome, in a randomized trial with noncompliance and no covariate information. We demonstrate how these bounds remain useful in observational settings with baseline confounders of the IV, as well as randomized trials with measured baseline covariates. The resulting bounds on the ATE are non-smooth functionals, and thus standard nonparametric efficiency theory is not immediately applicable. To remedy this, we propose (1) under a novel margin condition, influence function-based estimators of the bounds that can attain parametric convergence rates when the nuisance functions are modeled flexibly, and (2) estimators of smooth approximations of these bounds. We propose extensions to continuous outcomes, explore finite sample properties in simulations, and illustrate the proposed estimators in a randomized field experiment studying the effects of canvassing on resulting voter turnout.

We study the complexity of reductions for weighted reachability in parametric Markov decision processes. That is, we say a state p is never worse than q if for all valuations of the polynomial indeterminates it is the case that the maximal expected weight that can be reached from p is greater than the same value from q. In terms of computational complexity, we establish that determining whether p is never worse than q is coETR-complete. On the positive side, we give a polynomial-time algorithm to compute the equivalence classes of the order we study for Markov chains. Additionally, we describe and implement two inference rules to under-approximate the never-worse relation and empirically show that it can be used as an efficient preprocessing step for the analysis of large Markov decision processes.

This work explores the utility of explicit structure for representation learning in NLP by developing StrAE -- an autoencoding framework that faithfully leverages sentence structure to learn multi-level node embeddings in an unsupervised fashion. We use StrAE to train models across different types of sentential structure and objectives, including a novel contrastive loss over structure, and evaluate the learnt embeddings on a series of both intrinsic and extrinsic tasks. Our experiments indicate that leveraging explicit structure through StrAE leads to improved embeddings over prior work, and that our novel contrastive objective over structure outperforms the standard cross-entropy objective. Moreover, in contrast to findings from prior work that weakly leverages structure, we find that being completely faithful to structure does enable disambiguation between types of structure based on the corresponding model's performance. As further evidence of StrAE's utility, we develop a simple proof-of-concept approach to simultaneously induce structure while learning embeddings, rather than being given structure, and find that performance is comparable to that of the best-performing models where structure is given. Finally, we contextualise these results by comparing StrAE against standard unstructured baselines learnt in similar settings, and show that faithfully leveraging explicit structure can be beneficial in lexical and sentence-level semantics.

Out-of-distribution (OOD) detection is critical to ensuring the reliability and safety of machine learning systems. For instance, in autonomous driving, we would like the driving system to issue an alert and hand over the control to humans when it detects unusual scenes or objects that it has never seen before and cannot make a safe decision. This problem first emerged in 2017 and since then has received increasing attention from the research community, leading to a plethora of methods developed, ranging from classification-based to density-based to distance-based ones. Meanwhile, several other problems are closely related to OOD detection in terms of motivation and methodology. These include anomaly detection (AD), novelty detection (ND), open set recognition (OSR), and outlier detection (OD). Despite having different definitions and problem settings, these problems often confuse readers and practitioners, and as a result, some existing studies misuse terms. In this survey, we first present a generic framework called generalized OOD detection, which encompasses the five aforementioned problems, i.e., AD, ND, OSR, OOD detection, and OD. Under our framework, these five problems can be seen as special cases or sub-tasks, and are easier to distinguish. Then, we conduct a thorough review of each of the five areas by summarizing their recent technical developments. We conclude this survey with open challenges and potential research directions.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

Recent advances in maximizing mutual information (MI) between the source and target have demonstrated its effectiveness in text generation. However, previous works paid little attention to modeling the backward network of MI (i.e., dependency from the target to the source), which is crucial to the tightness of the variational information maximization lower bound. In this paper, we propose Adversarial Mutual Information (AMI): a text generation framework which is formed as a novel saddle point (min-max) optimization aiming to identify joint interactions between the source and target. Within this framework, the forward and backward networks are able to iteratively promote or demote each other's generated instances by comparing the real and synthetic data distributions. We also develop a latent noise sampling strategy that leverages random variations at the high-level semantic space to enhance the long term dependency in the generation process. Extensive experiments based on different text generation tasks demonstrate that the proposed AMI framework can significantly outperform several strong baselines, and we also show that AMI has potential to lead to a tighter lower bound of maximum mutual information for the variational information maximization problem.

We propose a new method for event extraction (EE) task based on an imitation learning framework, specifically, inverse reinforcement learning (IRL) via generative adversarial network (GAN). The GAN estimates proper rewards according to the difference between the actions committed by the expert (or ground truth) and the agent among complicated states in the environment. EE task benefits from these dynamic rewards because instances and labels yield to various extents of difficulty and the gains are expected to be diverse -- e.g., an ambiguous but correctly detected trigger or argument should receive high gains -- while the traditional RL models usually neglect such differences and pay equal attention on all instances. Moreover, our experiments also demonstrate that the proposed framework outperforms state-of-the-art methods, without explicit feature engineering.

北京阿比特科技有限公司