亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we propose a novel model called SGFormer, Semantic Graph TransFormer for point cloud-based 3D scene graph generation. The task aims to parse a point cloud-based scene into a semantic structural graph, with the core challenge of modeling the complex global structure. Existing methods based on graph convolutional networks (GCNs) suffer from the over-smoothing dilemma and can only propagate information from limited neighboring nodes. In contrast, SGFormer uses Transformer layers as the base building block to allow global information passing, with two types of newly-designed layers tailored for the 3D scene graph generation task. Specifically, we introduce the graph embedding layer to best utilize the global information in graph edges while maintaining comparable computation costs. Furthermore, we propose the semantic injection layer to leverage linguistic knowledge from large-scale language model (i.e., ChatGPT), to enhance objects' visual features. We benchmark our SGFormer on the established 3DSSG dataset and achieve a 40.94% absolute improvement in relationship prediction's R@50 and an 88.36% boost on the subset with complex scenes over the state-of-the-art. Our analyses further show SGFormer's superiority in the long-tail and zero-shot scenarios. Our source code is available at //github.com/Andy20178/SGFormer.

相關內容

This paper presents a Nonlinear Model Predictive Control (NMPC) scheme targeted at motion planning for mechatronic motion systems, such as drones and mobile platforms. NMPC-based motion planning typically requires low computation times to be able to provide control inputs at the required rate for system stability, disturbance rejection, and overall performance. Although there exist various ways in literature to reduce the solution times in NMPC, such times may not be low enough to allow real-time implementations. This paper presents ASAP-MPC, an approach to handle varying, sometimes restrictively large, solution times with an asynchronous update scheme, always allowing for full convergence and real-time execution. The NMPC algorithm is combined with a linear state feedback controller tracking the optimised trajectories for improved robustness against possible disturbances and plant-model mismatch. ASAP-MPC seamlessly merges trajectories, resulting from subsequent NMPC solutions, providing a smooth and continuous overall trajectory for the motion system. This frameworks applicability to embedded applications is shown on two different experiment setups where a state-of-the-art method fails: a quadcopter flying through a cluttered environment in hardware-in-the-loop simulation and a scale model truck-trailer manoeuvring in a structured lab environment.

Traditional Time Delay Neural Networks (TDNN) have achieved state-of-the-art performance at the cost of high computational complexity and slower inference speed, making them difficult to implement in an industrial environment. The Densely Connected Time Delay Neural Network (D-TDNN) with Context Aware Masking (CAM) module has proven to be an efficient structure to reduce complexity while maintaining system performance. In this paper, we propose a fast and lightweight model, LightCAM, which further adopts a depthwise separable convolution module (DSM) and uses multi-scale feature aggregation (MFA) for feature fusion at different levels. Extensive experiments are conducted on VoxCeleb dataset, the comparative results show that it has achieved an EER of 0.83 and MinDCF of 0.0891 in VoxCeleb1-O, which outperforms the other mainstream speaker verification methods. In addition, complexity analysis further demonstrates that the proposed architecture has lower computational cost and faster inference speed.

In this paper, we first present the character texture generation system \textit{Minecraft-ify}, specified to Minecraft video game toward in-game application. Ours can generate face-focused image for texture mapping tailored to 3D virtual character having cube manifold. While existing projects or works only generate texture, proposed system can inverse the user-provided real image, or generate average/random appearance from learned distribution. Moreover, it can be manipulated with text-guidance using StyleGAN and StyleCLIP. These features provide a more extended user experience with enlarged freedom as a user-friendly AI-tool. Project page can be found at //gh-bumsookim.github.io/Minecraft-ify/

In this paper, we propose a new visual navigation method based on a single RGB perspective camera. Using the Visual Teach & Repeat (VT&R) methodology, the robot acquires a visual trajectory consisting of multiple subgoal images in the teaching step. In the repeat step, we propose two network architectures, namely ViewNet and VelocityNet. The combination of the two networks allows the robot to follow the visual trajectory. ViewNet is trained to generate a future image based on the current view and the velocity command. The generated future image is combined with the subgoal image for training VelocityNet. We develop an offline Model Predictive Control (MPC) policy within VelocityNet with the dual goals of (1) reducing the difference between current and subgoal images and (2) ensuring smooth trajectories by mitigating velocity discontinuities. Offline training conserves computational resources, making it a more suitable option for scenarios with limited computational capabilities, such as embedded systems. We validate our experiments in a simulation environment, demonstrating that our model can effectively minimize the metric error between real and played trajectories.

We present DFormer, a novel RGB-D pretraining framework to learn transferable representations for RGB-D segmentation tasks. DFormer has two new key innovations: 1) Unlike previous works that encode RGB-D information with RGB pretrained backbone, we pretrain the backbone using image-depth pairs from ImageNet-1K, and hence the DFormer is endowed with the capacity to encode RGB-D representations; 2) DFormer comprises a sequence of RGB-D blocks, which are tailored for encoding both RGB and depth information through a novel building block design. DFormer avoids the mismatched encoding of the 3D geometry relationships in depth maps by RGB pretrained backbones, which widely lies in existing methods but has not been resolved. We finetune the pretrained DFormer on two popular RGB-D tasks, i.e., RGB-D semantic segmentation and RGB-D salient object detection, with a lightweight decoder head. Experimental results show that our DFormer achieves new state-of-the-art performance on these two tasks with less than half of the computational cost of the current best methods on two RGB-D semantic segmentation datasets and five RGB-D salient object detection datasets. Our code is available at: //github.com/VCIP-RGBD/DFormer.

In this paper, we introduce a new flow-based method for global optimization of Lipschitz functions, called Stein Boltzmann Sampling (SBS). Our method samples from the Boltzmann distribution that becomes asymptotically uniform over the set of the minimizers of the function to be optimized. Candidate solutions are sampled via the \emph{Stein Variational Gradient Descent} algorithm. We prove the asymptotic convergence of our method, introduce two SBS variants, and provide a detailed comparison with several state-of-the-art global optimization algorithms on various benchmark functions. The design of our method, the theoretical results, and our experiments, suggest that SBS is particularly well-suited to be used as a continuation of efficient global optimization methods as it can produce better solutions while making a good use of the budget.

We present a novel task for cross-dataset visual grounding in 3D scenes (Cross3DVG), which overcomes limitations of existing 3D visual grounding models, specifically their restricted 3D resources and consequent tendencies of overfitting a specific 3D dataset. We created RIORefer, a large-scale 3D visual grounding dataset, to facilitate Cross3DVG. It includes more than 63k diverse descriptions of 3D objects within 1,380 indoor RGB-D scans from 3RScan, with human annotations. After training the Cross3DVG model using the source 3D visual grounding dataset, we evaluate it without target labels using the target dataset with, e.g., different sensors, 3D reconstruction methods, and language annotators. Comprehensive experiments are conducted using established visual grounding models and with CLIP-based multi-view 2D and 3D integration designed to bridge gaps among 3D datasets. For Cross3DVG tasks, (i) cross-dataset 3D visual grounding exhibits significantly worse performance than learning and evaluation with a single dataset because of the 3D data and language variants across datasets. Moreover, (ii) better object detector and localization modules and fusing 3D data and multi-view CLIP-based image features can alleviate this lower performance. Our Cross3DVG task can provide a benchmark for developing robust 3D visual grounding models to handle diverse 3D scenes while leveraging deep language understanding.

This paper presents a novel home automation system named HASITE (Home Automation System based on Intelligent Transducer Enablers), which has been specifically designed to identify and configure transducers easily and quickly. These features are especially useful in situations where many transducers are deployed, since their setup becomes a cumbersome task that consumes a significant amount of time and human resources. HASITE simplifies the deployment of a home automation system by using wireless networks and both self-configuration and self-registration protocols. Thanks to the application of these three elements, HASITE is able to add new transducers by just powering them up. According to the tests performed in different realistic scenarios, a transducer is ready to be used in less than 13 s. Moreover, all HASITE functionalities can be accessed through an API, which also allows for the integration of third-party systems. As an example, an Android application based on the API is presented. Remote users can use it to interact with transducers by just using a regular smartphone or a tablet.

This paper proposes a novel variant of GFlowNet, genetic-guided GFlowNet (Genetic GFN), which integrates an iterative genetic search into GFlowNet. Genetic search effectively guides the GFlowNet to high-rewarded regions, addressing global over-exploration that results in training inefficiency and exploring limited regions. In addition, training strategies, such as rank-based replay training and unsupervised maximum likelihood pre-training, are further introduced to improve the sample efficiency of Genetic GFN. The proposed method shows a state-of-the-art score of 16.213, significantly outperforming the reported best score in the benchmark of 15.185, in practical molecular optimization (PMO), which is an official benchmark for sample-efficient molecular optimization. Remarkably, ours exceeds all baselines, including reinforcement learning, Bayesian optimization, generative models, GFlowNets, and genetic algorithms, in 14 out of 23 tasks.

In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.

北京阿比特科技有限公司