亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In multi-cell non-orthogonal multiple access (NOMA) systems, designing an appropriate user grouping strategy is an open problem due to diverse quality of service (QoS) requirements and inter-cell interference. In this paper, we exploit both game theory and graph theory to study QoS-aware user grouping strategies, aiming at minimizing power consumption in downlink multi-cell NOMA systems. Under different QoS requirements, we derive the optimal successive interference cancellation (SIC) decoding order with inter-cell interference, which is different from existing SIC decoding order of increasing channel gains, and obtain the corresponding power allocation strategy. Based on this, the exact potential game model of the user grouping strategies adopted by multiple cells is formulated. We prove that, in this game, the problem for each player to find a grouping strategy can be converted into the problem of searching for specific negative loops in the graph composed of users. Bellman-Ford algorithm is expanded to find these negative loops. Furthermore, we design a greedy based suboptimal strategy to approach the optimal solution with polynomial time. Extensive simulations confirm the effectiveness of grouping users with consideration of QoS and inter-cell interference, and show that the proposed strategies can considerably reduce total power consumption comparing with reference strategies.

相關內容

Group一直是研究計算機支持的合作工作、人機交互、計算機支持的協作學習和社會技術研究的主要場所。該會議將社會科學、計算機科學、工程、設計、價值觀以及其他與小組工作相關的多個不同主題的工作結合起來,并進行了廣泛的概念化。官網鏈接: · Networking · 控制器 · Extensibility · 優化器 ·
2021 年 9 月 27 日

Real-time end-to-end task scheduling in networked control systems (NCSs) requires the joint consideration of both network and computing resources to guarantee the desired quality of service (QoS). This paper introduces a new model for composite resource scheduling (CRS) in real-time networked control systems, which considers a strict execution order of sensing, computing, and actuating segments based on the control loop of the target NCS. We prove that the general CRS problem is NP-hard and study two special cases of the CRS problem. The first case restricts the computing and actuating segments to have unit-size execution time while the second case assumes that both sensing and actuating segments have unit-size execution time. We propose an optimal algorithm to solve the first case by checking the intervals with 100% network resource utilization and modify the deadlines of the tasks within those intervals to prune the search. For the second case, we propose another optimal algorithm based on a novel backtracking strategy to check the time intervals with the network resource utilization larger than 100% and modify the timing parameters of tasks based on these intervals. For the general case, we design a greedy strategy to modify the timing parameters of both network segments and computing segments within the time intervals that have network and computing resource utilization larger than 100%, respectively. The correctness and effectiveness of the proposed algorithms are verified through extensive experiments.

Recommender systems are one of the most applied methods in machine learning and find applications in many areas, ranging from economics to the Internet of things. This article provides a general overview of modern approaches to recommender system design using clustering as a preliminary step to improve overall performance. Using clustering can address several known issues in recommendation systems, including increasing the diversity, consistency, and reliability of recommendations; the data sparsity of user-preference matrices; and changes in user preferences over time. This work will be useful for both beginners in the field of recommender systems and specialists in related fields that are interested in examining the applicability of recommender systems. This review is focused on the analysis of the scientific literature on the topics of recommender systems and clustering models that have appeared in recent years and contains a representative list of the literature for the further exploration of this topic. In the first part, a brief introduction to the so-called classic or traditional recommendation algorithms is given, along with an overview of the clustering problem.

This paper studies a Group Influence with Minimum cost which aims to find a seed set with smallest cost that can influence all target groups, where each user is associated with a cost and a group is influenced if the total score of the influenced users belonging to the group is at least a certain threshold. As the group-influence function is neither submodular nor supermodular, theoretical bounds on the quality of solutions returned by the well-known greedy approach may not be guaranteed. To address this challenge, we propose a bi-criteria polynomial-time approximation algorithm with high certainty. At the heart of the algorithm is a novel group reachable reverse sample concept, which helps speed up the estimation of the group influence function. Finally, extensive experiments conducted on real social networks show that our proposed algorithm outperform the state-of-the-art algorithms in terms of the objective value and the running time.

In this paper we deal with a complex real world scheduling problem closely related to the well-known Resource-Constrained Project Scheduling Problem (RCPSP). The problem concerns industrial test laboratories in which a large number of tests has to be performed by qualified personnel using specialised equipment, while respecting deadlines and other constraints. We present different constraint programming models and search strategies for this problem. Furthermore, we propose a Very Large Neighborhood Search approach based on our CP methods. Our models are evaluated using CP solvers and a MIP solver both on real-world test laboratory data and on a set of generated instances of different sizes based on the real-world data. Further, we compare the exact approaches with VLNS and a Simulated Annealing heuristic. We could find feasible solutions for all instances and several optimal solutions and we show that using VLNS we can improve upon the results of the other approaches.

Recommender systems have been widely applied in different real-life scenarios to help us find useful information. Recently, Reinforcement Learning (RL) based recommender systems have become an emerging research topic. It often surpasses traditional recommendation models even most deep learning-based methods, owing to its interactive nature and autonomous learning ability. Nevertheless, there are various challenges of RL when applying in recommender systems. Toward this end, we firstly provide a thorough overview, comparisons, and summarization of RL approaches for five typical recommendation scenarios, following three main categories of RL: value-function, policy search, and Actor-Critic. Then, we systematically analyze the challenges and relevant solutions on the basis of existing literature. Finally, under discussion for open issues of RL and its limitations of recommendation, we highlight some potential research directions in this field.

With the development of social platforms, people are more and more inclined to combine into groups to participate in some activities, so group recommendation has gradually become a problem worthy of research. For group recommendation, an important issue is how to obtain the characteristic representation of the group and the item through personal interaction history, and obtain the group's preference for the item. For this problem, we proposed the model GIP4GR (Graph Neural Network with Interaction Pattern For Group Recommendation). Specifically, our model use the graph neural network framework with powerful representation capabilities to represent the interaction between group-user-items in the topological structure of the graph, and at the same time, analyze the interaction pattern of the graph to adjust the feature output of the graph neural network, the feature representations of groups, and items are obtained to calculate the group's preference for items. We conducted a lot of experiments on two real-world datasets to illustrate the superior performance of our model.

Recommender systems are widely used in big information-based companies such as Google, Twitter, LinkedIn, and Netflix. A recommender system deals with the problem of information overload by filtering important information fragments according to users' preferences. In light of the increasing success of deep learning, recent studies have proved the benefits of using deep learning in various recommendation tasks. However, most proposed techniques only aim to target individuals, which cannot be efficiently applied in group recommendation. In this paper, we propose a deep learning architecture to solve the group recommendation problem. On the one hand, as different individual preferences in a group necessitate preference trade-offs in making group recommendations, it is essential that the recommendation model can discover substitutes among user behaviors. On the other hand, it has been observed that a user as an individual and as a group member behaves differently. To tackle such problems, we propose using an attention mechanism to capture the impact of each user in a group. Specifically, our model automatically learns the influence weight of each user in a group and recommends items to the group based on its members' weighted preferences. We conduct extensive experiments on four datasets. Our model significantly outperforms baseline methods and shows promising results in applying deep learning to the group recommendation problem.

Privacy is a major good for users of personalized services such as recommender systems. When applied to the field of health informatics, privacy concerns of users may be amplified, but the possible utility of such services is also high. Despite availability of technologies such as k-anonymity, differential privacy, privacy-aware recommendation, and personalized privacy trade-offs, little research has been conducted on the users' willingness to share health data for usage in such systems. In two conjoint-decision studies (sample size n=521), we investigate importance and utility of privacy-preserving techniques related to sharing of personal health data for k-anonymity and differential privacy. Users were asked to pick a preferred sharing scenario depending on the recipient of the data, the benefit of sharing data, the type of data, and the parameterized privacy. Users disagreed with sharing data for commercial purposes regarding mental illnesses and with high de-anonymization risks but showed little concern when data is used for scientific purposes and is related to physical illnesses. Suggestions for health recommender system development are derived from the findings.

Recommender systems are one of the most successful applications of data mining and machine learning technology in practice. Academic research in the field is historically often based on the matrix completion problem formulation, where for each user-item-pair only one interaction (e.g., a rating) is considered. In many application domains, however, multiple user-item interactions of different types can be recorded over time. And, a number of recent works have shown that this information can be used to build richer individual user models and to discover additional behavioral patterns that can be leveraged in the recommendation process. In this work we review existing works that consider information from such sequentially-ordered user- item interaction logs in the recommendation process. Based on this review, we propose a categorization of the corresponding recommendation tasks and goals, summarize existing algorithmic solutions, discuss methodological approaches when benchmarking what we call sequence-aware recommender systems, and outline open challenges in the area.

In this paper we introduce a covariance framework for the analysis of EEG and MEG data that takes into account observed temporal stationarity on small time scales and trial-to-trial variations. We formulate a model for the covariance matrix, which is a Kronecker product of three components that correspond to space, time and epochs/trials, and consider maximum likelihood estimation of the unknown parameter values. An iterative algorithm that finds approximations of the maximum likelihood estimates is proposed. We perform a simulation study to assess the performance of the estimator and investigate the influence of different assumptions about the covariance factors on the estimated covariance matrix and on its components. Apart from that, we illustrate our method on real EEG and MEG data sets. The proposed covariance model is applicable in a variety of cases where spontaneous EEG or MEG acts as source of noise and realistic noise covariance estimates are needed for accurate dipole localization, such as in evoked activity studies, or where the properties of spontaneous EEG or MEG are themselves the topic of interest, such as in combined EEG/fMRI experiments in which the correlation between EEG and fMRI signals is investigated.

北京阿比特科技有限公司