亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Real-time end-to-end task scheduling in networked control systems (NCSs) requires the joint consideration of both network and computing resources to guarantee the desired quality of service (QoS). This paper introduces a new model for composite resource scheduling (CRS) in real-time networked control systems, which considers a strict execution order of sensing, computing, and actuating segments based on the control loop of the target NCS. We prove that the general CRS problem is NP-hard and study two special cases of the CRS problem. The first case restricts the computing and actuating segments to have unit-size execution time while the second case assumes that both sensing and actuating segments have unit-size execution time. We propose an optimal algorithm to solve the first case by checking the intervals with 100% network resource utilization and modify the deadlines of the tasks within those intervals to prune the search. For the second case, we propose another optimal algorithm based on a novel backtracking strategy to check the time intervals with the network resource utilization larger than 100% and modify the timing parameters of tasks based on these intervals. For the general case, we design a greedy strategy to modify the timing parameters of both network segments and computing segments within the time intervals that have network and computing resource utilization larger than 100%, respectively. The correctness and effectiveness of the proposed algorithms are verified through extensive experiments.

相關內容

With the advent of Industry 4.0, industrial facilities and critical infrastructures are transforming into an ecosystem of heterogeneous physical and cyber components, such as programmable logic controllers, increasingly interconnected and therefore exposed to cyber-physical attacks, i.e., security breaches in cyberspace that may adversely affect the physical processes underlying industrial control systems. In this paper, we propose a formal approach based on runtime enforcement to ensure specification compliance in networks of controllers, possibly compromised by colluding malware that may tamper with actuator commands, sensor readings, and inter-controller communications. Our approach relies on an ad-hoc sub-class of Ligatti et al.'s edit automata to enforce controllers represented in Hennessy and Regan's Timed Process Language. We define a synthesis algorithm that, given an alphabet $P$ of observable actions and a timed correctness property $e$, returns a monitor that enforces the property $e$ during the execution of any (potentially corrupted) controller with alphabet $P$, and complying with the property $e$. Our monitors correct and suppress incorrect actions coming from corrupted controllers and emit actions in full autonomy when the controller under scrutiny is not able to do so in a correct manner. Besides classical requirements, such as transparency and soundness, the proposed enforcement enjoys deadlock- and diverge-freedom of monitored controllers, together with scalability when dealing with networks of controllers. Finally, we test the proposed enforcement mechanism on a non-trivial case study, taken from the context of industrial water treatment systems, in which the controllers are injected with different malware with different malicious goals.

In today's world, circumstances, processes, and requirements for software systems are becoming increasingly complex. In order to operate properly in such dynamic environments, software systems must adapt to these changes, which has led to the research area of Self-Adaptive Systems (SAS). Platooning is one example of adaptive systems in Intelligent Transportation Systems, which is the ability of vehicles to travel with close inter-vehicle distances. This technology leads to an increase in road throughput and safety, which directly addresses the increased infrastructure needs due to increased traffic on the roads. However, the No-Free-Lunch theorem states that the performance of one platooning coordination strategy is not necessarily transferable to other problems. Moreover, especially in the field of SAS, the selection of the most appropriate strategy depends on the current situation of the system. In this paper, we address the problem of self-aware optimization of adaptation planning strategies by designing a framework that includes situation detection, strategy selection, and parameter optimization of the selected strategies. We apply our approach on the case study platooning coordination and evaluate the performance of the proposed framework.

We present an algorithm, based on the Differential Dynamic Programming framework, to handle trajectory optimization problems in which the horizon is determined online rather than fixed a priori. This algorithm exhibits exact one-step convergence for linear, quadratic, time-invariant problems and is fast enough for real-time nonlinear model-predictive control. We show derivations for the nonlinear algorithm in the discrete-time case, and apply this algorithm to a variety of nonlinear problems. Finally, we show the efficacy of the optimal-horizon model-predictive control scheme compared to a standard MPC controller, on an obstacle-avoidance problem with planar robots.

We consider the problem of generating private synthetic versions of real-world graphs containing private information while maintaining the utility of generated graphs. Differential privacy is a gold standard for data privacy, and the introduction of the differentially private stochastic gradient descent (DP-SGD) algorithm has facilitated the training of private neural models in a number of domains. Recent advances in graph generation via deep generative networks have produced several high performing models. We evaluate and compare state-of-the-art models including adjacency matrix based models and edge based models, and show a practical implementation that favours the edge-list approach utilizing the Gaussian noise mechanism when evaluated on commonly used graph datasets. Based on our findings, we propose a generative model that can reproduce the properties of real-world networks while maintaining edge-differential privacy. The proposed model is based on a stochastic neural network that generates discrete edge-list samples and is trained using the Wasserstein GAN objective with the DP-SGD optimizer. Being the first approach to combine these beneficial properties, our model contributes to further research on graph data privacy.

The containerized services allocated in the mobile edge clouds bring up the opportunity for large-scale and real-time applications to have low latency responses. Meanwhile, live container migration is introduced to support dynamic resource management and users' mobility. However, with the expansion of network topology scale and increasing migration requests, the current multiple migration planning and scheduling algorithms of cloud data centers can not suit large-scale scenarios in edge computing. The user mobility-induced live migrations in edge computing require near real-time level scheduling. Therefore, in this paper, through the Software-Defined Networking (SDN) controller, the resource competitions among live migrations are modeled as a dynamic resource dependency graph. We propose an iterative Maximal Independent Set (MIS)-based multiple migration planning and scheduling algorithm. Using real-world mobility traces of taxis and telecom base station coordinates, the evaluation results indicate that our solution can efficiently schedule multiple live container migrations in large-scale edge computing environments. It improves the processing time by 3000 times compared with the state-of-the-art migration planning algorithm in clouds while providing guaranteed migration performance for time-critical migrations.

In view of the security issues of the Internet of Things (IoT), considered better combining edge computing and blockchain with the IoT, integrating attribute-based encryption (ABE) and attribute-based access control (ABAC) models with attributes as the entry point, an attribute-based encryption and access control scheme (ABE-ACS) has been proposed. Facing Edge-Iot, which is a heterogeneous network composed of most resource-limited IoT devices and some nodes with higher computing power. For the problems of high resource consumption and difficult deployment of existing blockchain platforms, we design a lightweight blockchain (LBC) with improvement of the proof-of-work consensus. For the access control policies, the threshold tree and LSSS are used for conversion and assignment, stored in the blockchain to protect the privacy of the policy. For device and data, six smart contracts are designed to realize the ABAC and penalty mechanism, with which ABE is outsourced to edge nodes for privacy and integrity. Thus, our scheme realizing Edge-Iot privacy protection, data and device controlled access. The security analysis shows that the proposed scheme is secure and the experimental results show that our LBC has higher throughput and lower resources consumption, the cost of encryption and decryption of our scheme is desirable.

As mobile networks proliferate, we are experiencing a strong diversification of services, which requires greater flexibility from the existing network. Network slicing is proposed as a promising solution for resource utilization in 5G and future networks to address this dire need. In network slicing, dynamic resource orchestration and network slice management are crucial for maximizing resource utilization. Unfortunately, this process is too complex for traditional approaches to be effective due to a lack of accurate models and dynamic hidden structures. We formulate the problem as a Constrained Markov Decision Process (CMDP) without knowing models and hidden structures. Additionally, we propose to solve the problem using CLARA, a Constrained reinforcement LeArning based Resource Allocation algorithm. In particular, we analyze cumulative and instantaneous constraints using adaptive interior-point policy optimization and projection layer, respectively. Evaluations show that CLARA clearly outperforms baselines in resource allocation with service demand guarantees.

Flow Shop Scheduling (FSS) has been widely researched due to its application in many types of fields, while the human participant brings great challenges to this problem. Manpower scheduling captures attention for assigning workers with diverse proficiency to the appropriate stages, which is of great significance to production efficiency. In this paper, we present a novel algorithm called Self-encoding Barnacle Mating Optimizer (SBMO), which solves the FSS problem considering worker proficiency, defined as a new problem, Flow Shop Manpower Scheduling Problem (FSMSP). The highlight of the SBMO algorithm is the combination with the encoding method, crossover and mutation operators. Moreover, in order to solve the local optimum problem, we design a neighborhood search scheme. Finally, the extensive comparison simulations are conducted to demonstrate the superiority of the proposed SBMO. The results indicate the effectiveness of SBMO in approximate ratio, powerful stability, and execution time, compared with the classic and popular counterparts.

Vast amount of data generated from networks of sensors, wearables, and the Internet of Things (IoT) devices underscores the need for advanced modeling techniques that leverage the spatio-temporal structure of decentralized data due to the need for edge computation and licensing (data access) issues. While federated learning (FL) has emerged as a framework for model training without requiring direct data sharing and exchange, effectively modeling the complex spatio-temporal dependencies to improve forecasting capabilities still remains an open problem. On the other hand, state-of-the-art spatio-temporal forecasting models assume unfettered access to the data, neglecting constraints on data sharing. To bridge this gap, we propose a federated spatio-temporal model -- Cross-Node Federated Graph Neural Network (CNFGNN) -- which explicitly encodes the underlying graph structure using graph neural network (GNN)-based architecture under the constraint of cross-node federated learning, which requires that data in a network of nodes is generated locally on each node and remains decentralized. CNFGNN operates by disentangling the temporal dynamics modeling on devices and spatial dynamics on the server, utilizing alternating optimization to reduce the communication cost, facilitating computations on the edge devices. Experiments on the traffic flow forecasting task show that CNFGNN achieves the best forecasting performance in both transductive and inductive learning settings with no extra computation cost on edge devices, while incurring modest communication cost.

We introduce a new family of deep neural network models. Instead of specifying a discrete sequence of hidden layers, we parameterize the derivative of the hidden state using a neural network. The output of the network is computed using a black-box differential equation solver. These continuous-depth models have constant memory cost, adapt their evaluation strategy to each input, and can explicitly trade numerical precision for speed. We demonstrate these properties in continuous-depth residual networks and continuous-time latent variable models. We also construct continuous normalizing flows, a generative model that can train by maximum likelihood, without partitioning or ordering the data dimensions. For training, we show how to scalably backpropagate through any ODE solver, without access to its internal operations. This allows end-to-end training of ODEs within larger models.

北京阿比特科技有限公司