亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Coloring unit-disk graphs efficiently is an important problem in the global and distributed setting, with applications in radio channel assignment problems when the communication relies on omni-directional antennas of the same power. In this context it is important to bound not only the complexity of the coloring algorithms, but also the number of colors used. In this paper, we consider two natural distributed settings. In the location-aware setting (when nodes know their coordinates in the plane), we give a constant time distributed algorithm coloring any unit-disk graph $G$ with at most $4\omega(G)$ colors, where $\omega(G)$ is the clique number of $G$. This improves upon a classical 3-approximation algorithm for this problem, for all unit-disk graphs whose chromatic number significantly exceeds their clique number. When nodes do not know their coordinates in the plane, we give a distributed algorithm in the LOCAL model that colors every unit-disk graph $G$ with at most $5.68\omega(G)$ colors in $O(\log^3 \log n)$ rounds. Moreover, when $\omega(G)=O(1)$, the algorithm runs in $O(\log^* n)$ rounds. This algorithm is based on a study of the local structure of unit-disk graphs, which is of independent interest. We conjecture that every unit-disk graph $G$ has average degree at most $4\omega(G)$, which would imply the existence of a $O(\log n)$ round algorithm coloring any unit-disk graph $G$ with (approximately) $4\omega(G)$ colors in the LOCAL model. We provide partial results towards this conjecture using Fourier-analytical tools.

相關內容

Given a partially order set (poset) $P$, and a pair of families of ideals $\mathcal{I}$ and filters $\mathcal{F}$ in $P$ such that each pair $(I,F)\in \mathcal{I}\times\mathcal{F}$ has a non-empty intersection, the dualization problem over $P$ is to check whether there is an ideal $X$ in $P$ which intersects every member of $\mathcal{F}$ and does not contain any member of $\mathcal{I}$. Equivalently, the problem is to check for a distributive lattice $L=L(P)$, given by the poset $P$ of its set of joint-irreducibles, and two given antichains $\mathcal{A},\mathcal{B}\subseteq L$ such that no $a\in\mathcal{A}$ is dominated by any $b\in\mathcal{B}$, whether $\mathcal{A}$ and $\mathcal{B}$ cover (by domination) the entire lattice. We show that the problem can be solved in quasi-polynomial time in the sizes of $P$, $\mathcal{A}$ and $\mathcal{B}$, thus answering an open question in Babin and Kuznetsov (2017). As an application, we show that minimal infrequent closed sets of attributes in a rational database, with respect to a given implication base of maximum premise size of one, can be enumerated in incremental quasi-polynomial time.

Wireless sensor networks are among the most promising technologies of the current era because of their small size, lower cost, and ease of deployment. With the increasing number of wireless sensors, the probability of generating missing data also rises. This incomplete data could lead to disastrous consequences if used for decision-making. There is rich literature dealing with this problem. However, most approaches show performance degradation when a sizable amount of data is lost. Inspired by the emerging field of graph signal processing, this paper performs a new study of a Sobolev reconstruction algorithm in wireless sensor networks. Experimental comparisons on several publicly available datasets demonstrate that the algorithm surpasses multiple state-of-the-art techniques by a maximum margin of 54%. We further show that this algorithm consistently retrieves the missing data even during massive data loss situations.

Real-time scheduling theory assists developers of embedded systems in verifying that the timing constraints required by critical software tasks can be feasibly met on a given hardware platform. Fundamental problems in the theory are often formulated as search problems for fixed points of functions and are solved by fixed-point iterations. These fixed-point methods are used widely because they are simple to understand, simple to implement, and seem to work well in practice. These fundamental problems can also be formulated as integer programs and solved with algorithms that are based on theories of linear programming and cutting planes amongst others. However, such algorithms are harder to understand and implement than fixed-point iterations. In this research, we show that ideas like linear programming duality and cutting planes can be used to develop algorithms that are as easy to implement as existing fixed-point iteration schemes but have better convergence properties. We evaluate the algorithms on synthetically generated problem instances to demonstrate that the new algorithms are faster than the existing algorithms.

The Lov\'asz Local Lemma is a classic result in probability theory that is often used to prove the existence of combinatorial objects via the probabilistic method. In its simplest form, it states that if we have $n$ `bad events', each of which occurs with probability at most $p$ and is independent of all but $d$ other events, then under certain criteria on $p$ and $d$, all of the bad events can be avoided with positive probability. While the original proof was existential, there has been much study on the algorithmic Lov\'asz Local Lemma: that is, designing an algorithm which finds an assignment of the underlying random variables such that all the bad events are indeed avoided. Notably, the celebrated result of Moser and Tardos [JACM '10] also implied an efficient distributed algorithm for the problem, running in $O(\log^2 n)$ rounds. For instances with low $d$, this was improved to $O(d^2+\log^{O(1)}\log n)$ by Fischer and Ghaffari [DISC '17], a result that has proven highly important in distributed complexity theory (Chang and Pettie [SICOMP '19]). We give an improved algorithm for the Lov\'asz Local Lemma, providing a trade-off between the strength of the criterion relating $p$ and $d$, and the distributed round complexity. In particular, in the same regime as Fischer and Ghaffari's algorithm, we improve the round complexity to $O(\frac{d}{\log d}+\log^{O(1)}\log n)$. At the other end of the trade-off, we obtain a $\log^{O(1)}\log n$ round complexity for a substantially wider regime than previously known. As our main application, we also give the first $\log^{O(1)}\log n$-round distributed algorithm for the problem of $\Delta+o(\Delta)$-edge coloring a graph of maximum degree $\Delta$. This is an almost exponential improvement over previous results: no prior $\log^{o(1)} n$-round algorithm was known even for $2\Delta-2$-edge coloring.

In this paper we integrate the isotonic regression with Stone's cross-validation-based method to estimate discrete infinitely supported distribution. We prove that the estimator is strongly consistent, derive its rate of convergence for any underlying distribution, and for one-dimensional case we derive Marshal-type inequality for cumulative distribution function of the estimator. Also, we construct the asymptotically correct conservative global confidence band for the estimator. It is shown that, first, the estimator performs good even for small sized data sets, second, the estimator outperforms in the case of non-monotone underlying distribution, and, third, it performs almost as good as Grenander estimator when the true distribution is isotonic. Therefore, the new estimator provides a trade-off between goodness-of-fit, monotonicity and quality of probabilistic forecast. We apply the estimator to the time-to-onset data of visceral leishmaniasis in Brazil collected from 2007 to 2014.

Named entity recognition is a fundamental task in natural language processing, identifying the span and category of entities in unstructured texts. The traditional sequence labeling methodology ignores the nested entities, i.e. entities included in other entity mentions. Many approaches attempt to address this scenario, most of which rely on complex structures or have high computation complexity. The representation learning of the heterogeneous star graph containing text nodes and type nodes is investigated in this paper. In addition, we revise the graph attention mechanism into a hybrid form to address its unreasonableness in specific topologies. The model performs the type-supervised sequence labeling after updating nodes in the graph. The annotation scheme is an extension of the single-layer sequence labeling and is able to cope with the vast majority of nested entities. Extensive experiments on public NER datasets reveal the effectiveness of our model in extracting both flat and nested entities. The method achieved state-of-the-art performance on both flat and nested datasets. The significant improvement in accuracy reflects the superiority of the multi-layer labeling strategy.

We revisit binary decision trees from the perspective of partitions of the data. We introduce the notion of partitioning function, and we relate it to the growth function and to the VC dimension. We consider three types of features: real-valued, categorical ordinal and categorical nominal, with different split rules for each. For each feature type, we upper bound the partitioning function of the class of decision stumps before extending the bounds to the class of general decision tree (of any fixed structure) using a recursive approach. Using these new results, we are able to find the exact VC dimension of decision stumps on examples of $\ell$ real-valued features, which is given by the largest integer $d$ such that $2\ell \ge \binom{d}{\lfloor\frac{d}{2}\rfloor}$. Furthermore, we show that the VC dimension of a binary tree structure with $L_T$ leaves on examples of $\ell$ real-valued features is in $O(L_T \log(L_T\ell))$. Finally, we elaborate a pruning algorithm based on these results that performs better than the cost-complexity and reduced-error pruning algorithms on a number of data sets, with the advantage that no cross-validation is required.

Classic machine learning methods are built on the $i.i.d.$ assumption that training and testing data are independent and identically distributed. However, in real scenarios, the $i.i.d.$ assumption can hardly be satisfied, rendering the sharp drop of classic machine learning algorithms' performances under distributional shifts, which indicates the significance of investigating the Out-of-Distribution generalization problem. Out-of-Distribution (OOD) generalization problem addresses the challenging setting where the testing distribution is unknown and different from the training. This paper serves as the first effort to systematically and comprehensively discuss the OOD generalization problem, from the definition, methodology, evaluation to the implications and future directions. Firstly, we provide the formal definition of the OOD generalization problem. Secondly, existing methods are categorized into three parts based on their positions in the whole learning pipeline, namely unsupervised representation learning, supervised model learning and optimization, and typical methods for each category are discussed in detail. We then demonstrate the theoretical connections of different categories, and introduce the commonly used datasets and evaluation metrics. Finally, we summarize the whole literature and raise some future directions for OOD generalization problem. The summary of OOD generalization methods reviewed in this survey can be found at //out-of-distribution-generalization.com.

This paper focuses on the expected difference in borrower's repayment when there is a change in the lender's credit decisions. Classical estimators overlook the confounding effects and hence the estimation error can be magnificent. As such, we propose another approach to construct the estimators such that the error can be greatly reduced. The proposed estimators are shown to be unbiased, consistent, and robust through a combination of theoretical analysis and numerical testing. Moreover, we compare the power of estimating the causal quantities between the classical estimators and the proposed estimators. The comparison is tested across a wide range of models, including linear regression models, tree-based models, and neural network-based models, under different simulated datasets that exhibit different levels of causality, different degrees of nonlinearity, and different distributional properties. Most importantly, we apply our approaches to a large observational dataset provided by a global technology firm that operates in both the e-commerce and the lending business. We find that the relative reduction of estimation error is strikingly substantial if the causal effects are accounted for correctly.

Graph neural networks (GNNs) are a popular class of machine learning models whose major advantage is their ability to incorporate a sparse and discrete dependency structure between data points. Unfortunately, GNNs can only be used when such a graph-structure is available. In practice, however, real-world graphs are often noisy and incomplete or might not be available at all. With this work, we propose to jointly learn the graph structure and the parameters of graph convolutional networks (GCNs) by approximately solving a bilevel program that learns a discrete probability distribution on the edges of the graph. This allows one to apply GCNs not only in scenarios where the given graph is incomplete or corrupted but also in those where a graph is not available. We conduct a series of experiments that analyze the behavior of the proposed method and demonstrate that it outperforms related methods by a significant margin.

北京阿比特科技有限公司