亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The Lov\'asz Local Lemma is a classic result in probability theory that is often used to prove the existence of combinatorial objects via the probabilistic method. In its simplest form, it states that if we have $n$ `bad events', each of which occurs with probability at most $p$ and is independent of all but $d$ other events, then under certain criteria on $p$ and $d$, all of the bad events can be avoided with positive probability. While the original proof was existential, there has been much study on the algorithmic Lov\'asz Local Lemma: that is, designing an algorithm which finds an assignment of the underlying random variables such that all the bad events are indeed avoided. Notably, the celebrated result of Moser and Tardos [JACM '10] also implied an efficient distributed algorithm for the problem, running in $O(\log^2 n)$ rounds. For instances with low $d$, this was improved to $O(d^2+\log^{O(1)}\log n)$ by Fischer and Ghaffari [DISC '17], a result that has proven highly important in distributed complexity theory (Chang and Pettie [SICOMP '19]). We give an improved algorithm for the Lov\'asz Local Lemma, providing a trade-off between the strength of the criterion relating $p$ and $d$, and the distributed round complexity. In particular, in the same regime as Fischer and Ghaffari's algorithm, we improve the round complexity to $O(\frac{d}{\log d}+\log^{O(1)}\log n)$. At the other end of the trade-off, we obtain a $\log^{O(1)}\log n$ round complexity for a substantially wider regime than previously known. As our main application, we also give the first $\log^{O(1)}\log n$-round distributed algorithm for the problem of $\Delta+o(\Delta)$-edge coloring a graph of maximum degree $\Delta$. This is an almost exponential improvement over previous results: no prior $\log^{o(1)} n$-round algorithm was known even for $2\Delta-2$-edge coloring.

相關內容

Generative models for learning combinatorial structures have transformative impacts in many applications. However, existing approaches fail to offer efficient and accurate learning results. Because of the highly intractable nature of the gradient estimation of the learning objective subject to combinatorial constraints. Existing gradient estimation methods would easily run into exponential time/memory space, or incur huge estimation errors due to improper approximation. We develop NEural Lovasz Sampler (Nelson), a neural network based on Lov\'asz Local Lemma (LLL). We show it guarantees to generate samples satisfying combinatorial constraints from the distribution of the constrained Markov Random Fields model (MRF) under certain conditions. We further present a fully differentiable contrastive-divergence-based learning framework on constrained MRF (Nelson-CD). Meanwhile, Nelson-CD being fully differentiable allows us to take advantage of the parallel computing power of GPUs, resulting in great efficiency. Experimental results on three real-world combinatorial problems reveal that Nelson learns to generate 100% valid structures. In comparison, baselines either time out on large-size data sets or fail to generate valid structures, whereas Nelson scales much better with problem size. In addition, Nelson outperforms baselines in various learning metrics, such as log-likelihood and MAP scores.

This paper describes three methods for carrying out non-asymptotic inference on partially identified parameters that are solutions to a class of optimization problems. Applications in which the optimization problems arise include estimation under shape restrictions, estimation of models of discrete games, and estimation based on grouped data. The partially identified parameters are characterized by restrictions that involve the unknown population means of observed random variables in addition to structural parameters. Inference consists of finding confidence intervals for functions of the structural parameters. Our theory provides finite-sample lower bounds on the coverage probabilities of the confidence intervals under three sets of assumptions of increasing strength. With the moderate sample sizes found in most economics applications, the bounds become tighter as the assumptions strengthen. We discuss estimation of population parameters that the bounds depend on and contrast our methods with alternative methods for obtaining confidence intervals for partially identified parameters. The results of Monte Carlo experiments and empirical examples illustrate the usefulness of our method.

We address long-standing open questions raised by Williamson, Goemans, Vazirani and Mihail pertaining to the design of approximation algorithms for problems in network design via the primal-dual method (Combinatorica 15(3):435-454, 1995). Williamson et al.\ prove an approximation guarantee of two for connectivity augmentation problems where the connectivity requirements can be specified by so-called uncrossable functions. They state: ``Extending our algorithm to handle non-uncrossable functions remains a challenging open problem. The key feature of uncrossable functions is that there exists an optimal dual solution which is laminar. This property characterizes uncrossable functions\dots\ A larger open issue is to explore further the power of the primal-dual approach for obtaining approximation algorithms for other combinatorial optimization problems.'' Our main result proves an $O(1)$-approximation guarantee via the primal-dual method for a class of functions that generalizes the notion of an uncrossable function. We mention that the support of every optimal dual solution could be non-laminar for instances that can be handled by our methods. We present two applications of our main result: (1) An $O(1)$-approximation algorithm for augmenting the family of near-minimum cuts of a graph. (2) An $O(1)$-approximation algorithm for the model of $(p,2)$-Flexible Graph Connectivity. Keywords: { Primal-Dual Method, Network Design, $f$-Connectivity Problem, Near-Minimum Cuts, Approximation Algorithms, Flexible Graph Connectivity. }

We consider the constrained sampling problem where the goal is to sample from a distribution $\pi(x)\propto e^{-f(x)}$ and $x$ is constrained on a convex body $\mathcal{C}\subset \mathbb{R}^d$. Motivated by penalty methods from optimization, we propose penalized Langevin Dynamics (PLD) and penalized Hamiltonian Monte Carlo (PHMC) that convert the constrained sampling problem into an unconstrained one by introducing a penalty function for constraint violations. When $f$ is smooth and the gradient is available, we show $\tilde{\mathcal{O}}(d/\varepsilon^{10})$ iteration complexity for PLD to sample the target up to an $\varepsilon$-error where the error is measured in terms of the total variation distance and $\tilde{\mathcal{O}}(\cdot)$ hides some logarithmic factors. For PHMC, we improve this result to $\tilde{\mathcal{O}}(\sqrt{d}/\varepsilon^{7})$ when the Hessian of $f$ is Lipschitz and the boundary of $\mathcal{C}$ is sufficiently smooth. To our knowledge, these are the first convergence rate results for Hamiltonian Monte Carlo methods in the constrained sampling setting that can handle non-convex $f$ and can provide guarantees with the best dimension dependency among existing methods with deterministic gradients. We then consider the setting where unbiased stochastic gradients are available. We propose PSGLD and PSGHMC that can handle stochastic gradients without Metropolis-Hasting correction steps. When $f$ is strongly convex and smooth, we obtain an iteration complexity of $\tilde{\mathcal{O}}(d/\varepsilon^{18})$ and $\tilde{\mathcal{O}}(d\sqrt{d}/\varepsilon^{39})$ respectively in the 2-Wasserstein distance. For the more general case, when $f$ is smooth and non-convex, we also provide finite-time performance bounds and iteration complexity results. Finally, we test our algorithms on Bayesian LASSO regression and Bayesian constrained deep learning problems.

We study local canonical labeling algorithms on an Erd\H{o}s--R\'enyi random graph $G(n,p_n)$. A canonical labeling algorithm assigns a unique label to each vertex of an unlabeled graph such that the labels are invariant under isomorphism. Here we focus on local algorithms, where the label of each vertex depends only on its low-depth neighborhood. Czajka and Pandurangan showed that the degree profile of a vertex (i.e., the sorted list of the degrees of its neighbors) gives a canonical labeling with high probability when $n p_n = \omega( \log^{4}(n) / \log \log n )$ (and $p_{n} \leq 1/2$); subsequently, Mossel and Ross showed that the same holds when $n p_n = \omega( \log^{2}(n) )$. Our first result shows that their analysis essentially cannot be improved: we prove that when $n p_n = o( \log^{2}(n) / (\log \log n)^{3} )$, with high probability there exist distinct vertices with isomorphic $2$-neighborhoods. Our main result is a positive counterpart to this, showing that $3$-neighborhoods give a canonical labeling when $n p_n \geq (1+\delta) \log n$ (and $p_n \leq 1/2$); this improves a recent result of Ding, Ma, Wu, and Xu, completing the picture above the connectivity threshold. We also discuss implications for random graph isomorphism and shotgun assembly of random graphs.

The choice of activation functions and their motivation is a long-standing issue within the neural network community. Neuronal representations within artificial neural networks are commonly understood as logits, representing the log-odds score of presence of features within the stimulus. We derive logit-space operators equivalent to probabilistic Boolean logic-gates AND, OR, and XNOR for independent probabilities. Such theories are important to formalize more complex dendritic operations in real neurons, and these operations can be used as activation functions within a neural network, introducing probabilistic Boolean-logic as the core operation of the neural network. Since these functions involve taking multiple exponents and logarithms, they are computationally expensive and not well suited to be directly used within neural networks. Consequently, we construct efficient approximations named $\text{AND}_\text{AIL}$ (the AND operator Approximate for Independent Logits), $\text{OR}_\text{AIL}$, and $\text{XNOR}_\text{AIL}$, which utilize only comparison and addition operations, have well-behaved gradients, and can be deployed as activation functions in neural networks. Like MaxOut, $\text{AND}_\text{AIL}$ and $\text{OR}_\text{AIL}$ are generalizations of ReLU to two-dimensions. While our primary aim is to formalize dendritic computations within a logit-space probabilistic-Boolean framework, we deploy these new activation functions, both in isolation and in conjunction to demonstrate their effectiveness on a variety of tasks including image classification, transfer learning, abstract reasoning, and compositional zero-shot learning.

The Strong Exponential Time Hypothesis (SETH) asserts that for every $\varepsilon>0$ there exists $k$ such that $k$-SAT requires time $(2-\varepsilon)^n$. The field of fine-grained complexity has leveraged SETH to prove quite tight conditional lower bounds for dozens of problems in various domains and complexity classes, including Edit Distance, Graph Diameter, Hitting Set, Independent Set, and Orthogonal Vectors. Yet, it has been repeatedly asked in the literature whether SETH-hardness results can be proven for other fundamental problems such as Hamiltonian Path, Independent Set, Chromatic Number, MAX-$k$-SAT, and Set Cover. In this paper, we show that fine-grained reductions implying even $\lambda^n$-hardness of these problems from SETH for any $\lambda>1$, would imply new circuit lower bounds: super-linear lower bounds for Boolean series-parallel circuits or polynomial lower bounds for arithmetic circuits (each of which is a four-decade open question). We also extend this barrier result to the class of parameterized problems. Namely, for every $\lambda>1$ we conditionally rule out fine-grained reductions implying SETH-based lower bounds of $\lambda^k$ for a number of problems parameterized by the solution size $k$. Our main technical tool is a new concept called polynomial formulations. In particular, we show that many problems can be represented by relatively succinct low-degree polynomials, and that any problem with such a representation cannot be proven SETH-hard (without proving new circuit lower bounds).

Sublinear time algorithms for approximating maximum matching size have long been studied. Much of the progress over the last two decades on this problem has been on the algorithmic side. For instance, an algorithm of Behnezhad [FOCS'21] obtains a 1/2-approximation in $\tilde{O}(n)$ time for $n$-vertex graphs. A more recent algorithm by Behnezhad, Roghani, Rubinstein, and Saberi [SODA'23] obtains a slightly-better-than-1/2 approximation in $O(n^{1+\epsilon})$ time. On the lower bound side, Parnas and Ron [TCS'07] showed 15 years ago that obtaining any constant approximation of maximum matching size requires $\Omega(n)$ time. Proving any super-linear in $n$ lower bound, even for $(1-\epsilon)$-approximations, has remained elusive since then. In this paper, we prove the first super-linear in $n$ lower bound for this problem. We show that at least $n^{1.2 - o(1)}$ queries in the adjacency list model are needed for obtaining a $(\frac{2}{3} + \Omega(1))$-approximation of maximum matching size. This holds even if the graph is bipartite and is promised to have a matching of size $\Theta(n)$. Our lower bound argument builds on techniques such as correlation decay that to our knowledge have not been used before in proving sublinear time lower bounds. We complement our lower bound by presenting two algorithms that run in strongly sublinear time of $n^{2-\Omega(1)}$. The first algorithm achieves a $(\frac{2}{3}-\epsilon)$-approximation; this significantly improves prior close-to-1/2 approximations. Our second algorithm obtains an even better approximation factor of $(\frac{2}{3}+\Omega(1))$ for bipartite graphs. This breaks the prevalent $2/3$-approximation barrier and importantly shows that our $n^{1.2-o(1)}$ time lower bound for $(\frac{2}{3}+\Omega(1))$-approximations cannot be improved all the way to $n^{2-o(1)}$.

We propose quasi-stable coloring, an approximate version of stable coloring. Stable coloring, also called color refinement, is a well-studied technique in graph theory for classifying vertices, which can be used to build compact, lossless representations of graphs. However, its usefulness is limited due to its reliance on strict symmetries. Real data compresses very poorly using color refinement. We propose the first, to our knowledge, approximate color refinement scheme, which we call quasi-stable coloring. By using approximation, we alleviate the need for strict symmetry, and allow for a tradeoff between the degree of compression and the accuracy of the representation. We study three applications: Linear Programming, Max-Flow, and Betweenness Centrality, and provide theoretical evidence in each case that a quasi-stable coloring can lead to good approximations on the reduced graph. Next, we consider how to compute a maximal quasi-stable coloring: we prove that, in general, this problem is NP-hard, and propose a simple, yet effective algorithm based on heuristics. Finally, we evaluate experimentally the quasi-stable coloring technique on several real graphs and applications, comparing with prior approximation techniques. A reference implementation and the experiment code are available at //github.com/mkyl/QuasiStableColors.jl .

We consider a multi-agent episodic MDP setup where an agent (leader) takes action at each step of the episode followed by another agent (follower). The state evolution and rewards depend on the joint action pair of the leader and the follower. Such type of interactions can find applications in many domains such as smart grids, mechanism design, security, and policymaking. We are interested in how to learn policies for both the players with provable performance guarantee under a bandit feedback setting. We focus on a setup where both the leader and followers are {\em non-myopic}, i.e., they both seek to maximize their rewards over the entire episode and consider a linear MDP which can model continuous state-space which is very common in many RL applications. We propose a {\em model-free} RL algorithm and show that $\tilde{\mathcal{O}}(\sqrt{d^3H^3T})$ regret bounds can be achieved for both the leader and the follower, where $d$ is the dimension of the feature mapping, $H$ is the length of the episode, and $T$ is the total number of steps under the bandit feedback information setup. Thus, our result holds even when the number of states becomes infinite. The algorithm relies on {\em novel} adaptation of the LSVI-UCB algorithm. Specifically, we replace the standard greedy policy (as the best response) with the soft-max policy for both the leader and the follower. This turns out to be key in establishing uniform concentration bound for the value functions. To the best of our knowledge, this is the first sub-linear regret bound guarantee for the Markov games with non-myopic followers with function approximation.

北京阿比特科技有限公司