亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The problem of optimal estimation of linear functionals constructed from the unobserved values of a stochastic sequence with periodically stationary increments based on observations of the sequence with stationary noise is considered. For sequences with known spectral densities, we obtain formulas for calculating values of the mean square errors and the spectral characteristics of the optimal estimates of the functionals. Formulas that determine the least favorable spectral densities and the minimax-robust spectral characteristics of the optimal linear estimates of functionals are proposed in the case where spectral densities of the sequence are not exactly known while some sets of admissible spectral densities are specified.

相關內容

Estimating free energy differences, an important problem in computational drug discovery and in a wide range of other application areas, commonly involves a computationally intensive process of sampling a family of high-dimensional probability distributions and a procedure for computing estimates based on those samples. The variance of the free energy estimate of interest typically depends strongly on how the total computational resources available for sampling are divided among the distributions, but determining an efficient allocation is difficult without sampling the distributions. Here we introduce the Times Square sampling algorithm, a novel on-the-fly estimation method that dynamically allocates resources in such a way as to significantly accelerate the estimation of free energies and other observables, while providing rigorous convergence guarantees for the estimators. We also show that it is possible, surprisingly, for on-the-fly free energy estimation to achieve lower asymptotic variance than the maximum-likelihood estimator MBAR, raising the prospect that on-the-fly estimation could reduce variance in a variety of other statistical applications.

In the present note we consider a type of matrices stemming in the context of the numerical approximation of distributed order fractional differential equations (FDEs): from one side they could look standard, since they are, real, symmetric and positive definite. On the other hand they present specific difficulties which prevent the successful use of classical tools. In particular the associated matrix-sequence, with respect to the matrix-size, is ill-conditioned and it is such that a generating function does not exists, but we face the problem of dealing with a sequence of generating functions with an intricate expression. Nevertheless, we obtain a real interval where the smallest eigenvalue belongs, showing also its asymptotic behavior. We observe that the new bounds improve those already present in the literature and give a more accurate spectral information, which are in fact used in the design of fast numerical algorithms for the associated large linear systems, approximating the given distributed order FDEs. Very satisfactory numerical results are presented and critically discussed, while a section with conclusions and open problems ends the current note.

Physical activity (PA) is an important risk factor for many health outcomes. Wearable-devices such as accelerometers are increasingly used in biomedical studies to understand the associations between PA and health outcomes. Statistical analyses involving accelerometer data are challenging due to the following three characteristics: (i) high-dimensionality, (ii) temporal dependence, and (iii) measurement error. To address these challenges we treat accelerometer-based measures of physical activity as a single function-valued covariate prone to measurement error. Specifically, in order to determine the relationship between PA and a health outcome of interest, we propose a regression model with a functional covariate that accounts for measurement error. Using regression calibration, we develop a two-step estimation method for the model parameters and establish their consistency. A test is also proposed to test the significance of the estimated model parameters. Simulation studies are conducted to compare the proposed methods with existing alternative approaches under varying scenarios. Finally, the developed methods are used to assess the relationship between PA intensity and BMI obtained from the National Health and Nutrition Examination Survey data.

The conditional mean is a fundamental and important quantity whose applications include the theories of estimation and rate-distortion. It is also notoriously difficult to work with. This paper establishes novel bounds on the differential entropy of the conditional mean in the case of finite-variance input signals and additive Gaussian noise. The main result is a new lower bound in terms of the differential entropies of the input signal and the noisy observation. The main results are also extended to the vector Gaussian channel and to the natural exponential family. Various other properties such as upper bounds, asymptotics, Taylor series expansion, and connection to Fisher Information are obtained. Two applications of the lower bound in the remote-source coding and CEO problem are discussed.

Univariate and multivariate general linear regression models, subject to linear inequality constraints, arise in many scientific applications. The linear inequality restrictions on model parameters are often available from phenomenological knowledge and motivated by machine learning applications of high-consequence engineering systems (Agrell, 2019; Veiga and Marrel, 2012). Some studies on the multiple linear models consider known linear combinations of the regression coefficient parameters restricted between upper and lower bounds. In the present paper, we consider both univariate and multivariate general linear models subjected to this kind of linear restrictions. So far, research on univariate cases based on Bayesian methods is all under the condition that the coefficient matrix of the linear restrictions is a square matrix of full rank. This condition is not, however, always feasible. Another difficulty arises at the estimation step by implementing the Gibbs algorithm, which exhibits, in most cases, slow convergence. This paper presents a Bayesian method to estimate the regression parameters when the matrix of the constraints providing the set of linear inequality restrictions undergoes no condition. For the multivariate case, our Bayesian method estimates the regression parameters when the number of the constrains is less than the number of the regression coefficients in each multiple linear models. We examine the efficiency of our Bayesian method through simulation studies for both univariate and multivariate regressions. After that, we illustrate that the convergence of our algorithm is relatively faster than the previous methods. Finally, we use our approach to analyze two real datasets.

We investigate data-driven forward-inverse problems for Yajima-Oikawa system by employing two technologies which improve the performance of PINN in deep physics-informed neural network (PINN), namely neuron-wise locally adaptive activation functions and L2 norm parameter regularization. In particular, we not only recover three different forms of vector rogue waves (RWs) in the forward problem of Yajima-Oikawa (YO) system, including bright-bright RWs, intermediatebright RWs and dark-bright RWs, but also study the inverse problem of YO system by data-driven with noise of different intensity. Compared with PINN method using only locally adaptive activation function, the PINN method with two strategies shows amazing robustness when studying the inverse problem of YO system with noisy training data, that is, the improved PINN model proposed by us has excellent noise immunity. The asymptotic analysis of wavenumber k and the MI analysis for YO system with unknown parameters are derived systematically by applying the linearized instability analysis on plane wave.

Gaussian covariance graph model is a popular model in revealing underlying dependency structures among random variables. A Bayesian approach to the estimation of covariance structures uses priors that force zeros on some off-diagonal entries of covariance matrices and put a positive definite constraint on matrices. In this paper, we consider a spike and slab prior on off-diagonal entries, which uses a mixture of point-mass and normal distribution. The point-mass naturally introduces sparsity to covariance structures so that the resulting posterior from this prior renders covariance structure learning. Under this prior, we calculate posterior model probabilities of covariance structures using Laplace approximation. We show that the error due to Laplace approximation becomes asymptotically marginal at some rate depending on the posterior convergence rate of covariance matrix under the Frobenius norm. With the approximated posterior model probabilities, we propose a new framework for estimating a covariance structure. Since the Laplace approximation is done around the mode of conditional posterior of covariance matrix, which cannot be obtained in the closed form, we propose a block coordinate descent algorithm to find the mode and show that the covariance matrix can be estimated using this algorithm once the structure is chosen. Through a simulation study based on five numerical models, we show that the proposed method outperforms graphical lasso and sample covariance matrix in terms of root mean squared error, max norm, spectral norm, specificity, and sensitivity. Also, the advantage of the proposed method is demonstrated in terms of accuracy compared to our competitors when it is applied to linear discriminant analysis (LDA) classification to breast cancer diagnostic dataset.

This paper studies the adaptive optimal stationary control of continuous-time linear stochastic systems with both additive and multiplicative noises, using reinforcement learning techniques. Based on policy iteration, a novel off-policy reinforcement learning algorithm, named optimistic least-squares-based policy iteration, is proposed which is able to find iteratively near-optimal policies of the adaptive optimal stationary control problem directly from input/state data without explicitly identifying any system matrices, starting from an initial admissible control policy. The solutions given by the proposed optimistic least-squares-based policy iteration are proved to converge to a small neighborhood of the optimal solution with probability one, under mild conditions. The application of the proposed algorithm to a triple inverted pendulum example validates its feasibility and effectiveness.

We present the Koopman State Estimator (KoopSE), a framework for model-free batch state estimation of control-affine systems that makes no linearization assumptions, requires no problem-specific feature selections, and has an inference computational cost that is independent of the number of training points. We lift the original nonlinear system into a higher-dimensional Reproducing Kernel Hilbert Space (RKHS), where the system becomes bilinear. The time-invariant model matrices can be learned by solving a least-squares problem on training trajectories. At test time, the system is algebraically manipulated into a linear time-varying system, where standard batch linear state estimation techniques can be used to efficiently compute state means and covariances. Random Fourier Features (RFF) are used to combine the computational efficiency of Koopman-based methods and the generality of kernel-embedding methods. KoopSE is validated experimentally on a localization task involving a mobile robot equipped with ultra-wideband receivers and wheel odometry. KoopSE estimates are more accurate and consistent than the standard model-based extended Rauch-Tung-Striebel (RTS) smoother, despite KoopSE having no prior knowledge of the system's motion or measurement models.

The main contribution of this paper is a new submap joining based approach for solving large-scale Simultaneous Localization and Mapping (SLAM) problems. Each local submap is independently built using the local information through solving a small-scale SLAM; the joining of submaps mainly involves solving linear least squares and performing nonlinear coordinate transformations. Through approximating the local submap information as the state estimate and its corresponding information matrix, judiciously selecting the submap coordinate frames, and approximating the joining of a large number of submaps by joining only two maps at a time, either sequentially or in a more efficient Divide and Conquer manner, the nonlinear optimization process involved in most of the existing submap joining approaches is avoided. Thus the proposed submap joining algorithm does not require initial guess or iterations since linear least squares problems have closed-form solutions. The proposed Linear SLAM technique is applicable to feature-based SLAM, pose graph SLAM and D-SLAM, in both two and three dimensions, and does not require any assumption on the character of the covariance matrices. Simulations and experiments are performed to evaluate the proposed Linear SLAM algorithm. Results using publicly available datasets in 2D and 3D show that Linear SLAM produces results that are very close to the best solutions that can be obtained using full nonlinear optimization algorithm started from an accurate initial guess. The C/C++ and MATLAB source codes of Linear SLAM are available on OpenSLAM.

北京阿比特科技有限公司