亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Distributed systems store data objects redundantly to balance the data access load over multiple nodes. Load balancing performance depends mainly on 1) the level of storage redundancy and 2) the assignment of data objects to storage nodes. We analyze the performance implications of these design choices by considering four practical storage schemes that we refer to as clustering, cyclic, block and random design. We formulate the problem of load balancing as maintaining the load on any node below a given threshold. Regarding the level of redundancy, we find that the desired load balance can be achieved in a system of $n$ nodes only if the replication factor $d = \Omega(\log(n)^{1/3})$, which is a necessary condition for any storage design. For clustering and cyclic designs, $d = \Omega(\log(n))$ is necessary and sufficient. For block and random designs, $d = \Omega(\log(n))$ is sufficient but unnecessary. Whether $d = \Omega(\log(n)^{1/3})$ is sufficient remains open. The assignment of objects to nodes essentially determines which objects share the access capacity on each node. We refer to the number of nodes jointly shared by a set of objects as the \emph{overlap} between those objects. We find that many consistently slight overlaps between the objects (block, random) are better than few but occasionally significant overlaps (clustering, cyclic). However, when the demand is ''skewed beyond a level'' the impact of overlaps becomes the opposite. We derive our results by connecting the load-balancing problem to mathematical constructs that have been used to study other problems. For a class of storage designs containing the clustering and cyclic design, we express load balance in terms of the maximum of moving sums of i.i.d. random variables, which is known as the scan statistic. For random design, we express load balance by using the occupancy metric for random allocation with complexes.

相關內容

In research areas with scarce data, representation learning plays a significant role. This work aims to enhance representation learning for clinical time series by deriving universal embeddings for clinical features, such as heart rate and blood pressure. We use self-supervised training paradigms for language models to learn high-quality clinical feature embeddings, achieving a finer granularity than existing time-step and patient-level representation learning. We visualize the learnt embeddings via unsupervised dimension reduction techniques and observe a high degree of consistency with prior clinical knowledge. We also evaluate the model performance on the MIMIC-III benchmark and demonstrate the effectiveness of using clinical feature embeddings. We publish our code online for replication.

Training machine learning models can be very expensive or even unaffordable. This may be, for example, due to data limitations (unavailability or being too large), or computational power limitations. Therefore, it is a common practice to rely on open-source pre-trained models whenever possible. However, this practice is alarming from a security perspective. Pre-trained models can be infected with Trojan attacks, in which the attacker embeds a trigger in the model such that the model's behavior can be controlled by the attacker when the trigger is present in the input. In this paper, we present a novel method for detecting Trojan models. Our method creates a signature for a model based on activation optimization. A classifier is then trained to detect a Trojan model given its signature. We call our method TRIGS for TRojan Identification from Gradient-based Signatures. TRIGS achieves state-of-the-art performance on two public datasets of convolutional models. Additionally, we introduce a new challenging dataset of ImageNet models based on the vision transformer architecture. TRIGS delivers the best performance on the new dataset, surpassing the baseline methods by a large margin. Our experiments also show that TRIGS requires only a small amount of clean samples to achieve good performance, and works reasonably well even if the defender does not have prior knowledge about the attacker's model architecture. Our dataset will be released soon.

Mutual information between two random variables is a well-studied notion, whose understanding is fairly complete. Mutual information between one random variable and a pair of other random variables, however, is a far more involved notion. Specifically, Shannon's mutual information does not capture fine-grained interactions between those three variables, resulting in limited insights in complex systems. To capture these fine-grained interactions, in 2010 Williams and Beer proposed to decompose this mutual information to information atoms, called unique, redundant, and synergistic, and proposed several operational axioms that these atoms must satisfy. In spite of numerous efforts, a general formula which satisfies these axioms has yet to be found. Inspired by Judea Pearl's do-calculus, we resolve this open problem by introducing the do-operation, an operation over the variable system which sets a certain marginal to a desired value, which is distinct from any existing approaches. Using this operation, we provide the first explicit formula for calculating the information atoms so that Williams and Beer's axioms are satisfied, as well as additional properties from subsequent studies in the field.

Stone locales together with continuous maps form a coreflective subcategory of spectral locales and perfect maps. A proof in the internal language of an elementary topos was previously given by the second-named author. This proof can be easily translated to univalent type theory using resizing axioms. In this work, we show how to achieve such a translation without resizing axioms, by working with large and locally small frames with small bases. This requires predicative reformulations of several fundamental concepts of locale theory in predicative HoTT/UF, which we investigate systematically.

This work establishes new convergence guarantees for gradient descent in smooth convex optimization via a computer-assisted analysis technique. Our theory allows nonconstant stepsize policies with frequent long steps potentially violating descent by analyzing the overall effect of many iterations at once rather than the typical one-iteration inductions used in most first-order method analyses. We show that long steps, which may increase the objective value in the short term, lead to provably faster convergence in the long term. A conjecture towards proving a faster $O(1/T\log T)$ rate for gradient descent is also motivated along with simple numerical validation.

Modern data aggregation often involves a platform collecting data from a network of users with various privacy options. Platforms must solve the problem of how to allocate incentives to users to convince them to share their data. This paper puts forth an idea for a \textit{fair} amount to compensate users for their data at a given privacy level based on an axiomatic definition of fairness, along the lines of the celebrated Shapley value. To the best of our knowledge, these are the first fairness concepts for data that explicitly consider privacy constraints. We also formulate a heterogeneous federated learning problem for the platform with privacy level options for users. By studying this problem, we investigate the amount of compensation users receive under fair allocations with different privacy levels, amounts of data, and degrees of heterogeneity. We also discuss what happens when the platform is forced to design fair incentives. Under certain conditions we find that when privacy sensitivity is low, the platform will set incentives to ensure that it collects all the data with the lowest privacy options. When the privacy sensitivity is above a given threshold, the platform will provide no incentives to users. Between these two extremes, the platform will set the incentives so some fraction of the users chooses the higher privacy option and the others chooses the lower privacy option.

Cooperative game theory has diverse applications in contemporary artificial intelligence, including domains like interpretable machine learning, resource allocation, and collaborative decision-making. However, specifying a cooperative game entails assigning values to exponentially many coalitions, and obtaining even a single value can be resource-intensive in practice. Yet simply leaving certain coalition values undisclosed introduces ambiguity regarding individual contributions to the collective grand coalition. This ambiguity often leads to players holding overly optimistic expectations, stemming from either inherent biases or strategic considerations, frequently resulting in collective claims exceeding the actual grand coalition value. In this paper, we present a framework aimed at optimizing the sequence for revealing coalition values, with the overarching goal of efficiently closing the gap between players' expectations and achievable outcomes in cooperative games. Our contributions are threefold: (i) we study the individual players' optimistic completions of games with missing coalition values along with the arising gap, and investigate its analytical characteristics that facilitate more efficient optimization; (ii) we develop methods to minimize this gap over classes of games with a known prior by disclosing values of additional coalitions in both offline and online fashion; and (iii) we empirically demonstrate the algorithms' performance in practical scenarios, together with an investigation into the typical order of revealing coalition values.

Recent years have witnessed remarkable advances in artificial intelligence generated content(AIGC), with diverse input modalities, e.g., text, image, video, audio and 3D. The 3D is the most close visual modality to real-world 3D environment and carries enormous knowledge. The 3D content generation shows both academic and practical values while also presenting formidable technical challenges. This review aims to consolidate developments within the burgeoning domain of 3D content generation. Specifically, a new taxonomy is proposed that categorizes existing approaches into three types: 3D native generative methods, 2D prior-based 3D generative methods, and hybrid 3D generative methods. The survey covers approximately 60 papers spanning the major techniques. Besides, we discuss limitations of current 3D content generation techniques, and point out open challenges as well as promising directions for future work. Accompanied with this survey, we have established a project website where the resources on 3D content generation research are provided. The project page is available at //github.com/hitcslj/Awesome-AIGC-3D.

Graph neural networks (GNNs) is widely used to learn a powerful representation of graph-structured data. Recent work demonstrates that transferring knowledge from self-supervised tasks to downstream tasks could further improve graph representation. However, there is an inherent gap between self-supervised tasks and downstream tasks in terms of optimization objective and training data. Conventional pre-training methods may be not effective enough on knowledge transfer since they do not make any adaptation for downstream tasks. To solve such problems, we propose a new transfer learning paradigm on GNNs which could effectively leverage self-supervised tasks as auxiliary tasks to help the target task. Our methods would adaptively select and combine different auxiliary tasks with the target task in the fine-tuning stage. We design an adaptive auxiliary loss weighting model to learn the weights of auxiliary tasks by quantifying the consistency between auxiliary tasks and the target task. In addition, we learn the weighting model through meta-learning. Our methods can be applied to various transfer learning approaches, it performs well not only in multi-task learning but also in pre-training and fine-tuning. Comprehensive experiments on multiple downstream tasks demonstrate that the proposed methods can effectively combine auxiliary tasks with the target task and significantly improve the performance compared to state-of-the-art methods.

Providing model-generated explanations in recommender systems is important to user experience. State-of-the-art recommendation algorithms -- especially the collaborative filtering (CF) based approaches with shallow or deep models -- usually work with various unstructured information sources for recommendation, such as textual reviews, visual images, and various implicit or explicit feedbacks. Though structured knowledge bases were considered in content-based approaches, they have been largely ignored recently due to the availability of vast amount of data and the learning power of many complex models. However, structured knowledge bases exhibit unique advantages in personalized recommendation systems. When the explicit knowledge about users and items is considered for recommendation, the system could provide highly customized recommendations based on users' historical behaviors and the knowledge is helpful for providing informed explanations regarding the recommended items. In this work, we propose to reason over knowledge base embeddings for explainable recommendation. Specifically, we propose a knowledge base representation learning framework to embed heterogeneous entities for recommendation, and based on the embedded knowledge base, a soft matching algorithm is proposed to generate personalized explanations for the recommended items. Experimental results on real-world e-commerce datasets verified the superior recommendation performance and the explainability power of our approach compared with state-of-the-art baselines.

北京阿比特科技有限公司