This study presents machine learning models that forecast and categorize lost circulation severity preemptively using a large class imbalanced drilling dataset. We demonstrate reproducible core techniques involved in tackling a large drilling engineering challenge utilizing easily interpretable machine learning approaches. We utilized a 65,000+ records data with class imbalance problem from Azadegan oilfield formations in Iran. Eleven of the dataset's seventeen parameters are chosen to be used in the classification of five lost circulation events. To generate classification models, we used six basic machine learning algorithms and four ensemble learning methods. Linear Discriminant Analysis (LDA), Logistic Regression (LR), Support Vector Machines (SVM), Classification and Regression Trees (CART), k-Nearest Neighbors (KNN), and Gaussian Naive Bayes (GNB) are the six fundamental techniques. We also used bagging and boosting ensemble learning techniques in the investigation of solutions for improved predicting performance. The performance of these algorithms is measured using four metrics: accuracy, precision, recall, and F1-score. The F1-score weighted to represent the data imbalance is chosen as the preferred evaluation criterion. The CART model was found to be the best in class for identifying drilling fluid circulation loss events with an average weighted F1-score of 0.9904 and standard deviation of 0.0015. Upon application of ensemble learning techniques, a Random Forest ensemble of decision trees showed the best predictive performance. It identified and classified lost circulation events with a perfect weighted F1-score of 1.0. Using Permutation Feature Importance (PFI), the measured depth was found to be the most influential factor in accurately recognizing lost circulation events while drilling.
The alfalfa crop is globally important as livestock feed, so highly efficient planting and harvesting could benefit many industries, especially as the global climate changes and traditional methods become less accurate. Recent work using machine learning (ML) to predict yields for alfalfa and other crops has shown promise. Previous efforts used remote sensing, weather, planting, and soil data to train machine learning models for yield prediction. However, while remote sensing works well, the models require large amounts of data and cannot make predictions until the harvesting season begins. Using weather and planting data from alfalfa variety trials in Kentucky and Georgia, our previous work compared feature selection techniques to find the best technique and best feature set. In this work, we trained a variety of machine learning models, using cross validation for hyperparameter optimization, to predict biomass yields, and we showed better accuracy than similar work that employed more complex techniques. Our best individual model was a random forest with a mean absolute error of 0.081 tons/acre and R{$^2$} of 0.941. Next, we expanded this dataset to include Wisconsin and Mississippi, and we repeated our experiments, obtaining a higher best R{$^2$} of 0.982 with a regression tree. We then isolated our testing datasets by state to explore this problem's eligibility for domain adaptation (DA), as we trained on multiple source states and tested on one target state. This Trivial DA (TDA) approach leaves plenty of room for improvement through exploring more complex DA techniques in forthcoming work.
Transfer learning (TL) from pretrained deep models is a standard practice in modern medical image classification (MIC). However, what levels of features to be reused are problem-dependent, and uniformly finetuning all layers of pretrained models may be suboptimal. This insight has partly motivated the recent \emph{differential} TL strategies, such as TransFusion (TF) and layer-wise finetuning (LWFT), which treat the layers in the pretrained models differentially. In this paper, we add one more strategy into this family, called \emph{TruncatedTL}, which reuses and finetunes appropriate bottom layers and directly discards the remaining layers. This yields not only superior MIC performance but also compact models for efficient inference, compared to other differential TL methods. We validate the performance and model efficiency of TruncatedTL on three MIC tasks covering both 2D and 3D images. For example, on the BIMCV COVID-19 classification dataset, we obtain improved performance with around $1/4$ model size and $2/3$ inference time compared to the standard full TL model. Code is available at //github.com/sun-umn/Transfer-Learning-in-Medical-Imaging.
With advancements in computer vision taking place day by day, recently a lot of light is being shed on activity recognition. With the range for real-world applications utilizing this field of study increasing across a multitude of industries such as security and healthcare, it becomes crucial for businesses to distinguish which machine learning methods perform better than others in the area. This paper strives to aid in this predicament i.e. building upon previous related work, it employs both classical and ensemble approaches on rich pose estimation (OpenPose) and HAR datasets. Making use of appropriate metrics to evaluate the performance for each model, the results show that overall, random forest yields the highest accuracy in classifying ADLs. Relatively all the models have excellent performance across both datasets, except for logistic regression and AdaBoost perform poorly in the HAR one. With the limitations of this paper also discussed in the end, the scope for further research is vast, which can use this paper as a base in aims of producing better results.
Partial synchrony is a model of computation in many distributed algorithms and modern blockchains. These algorithms are typically parameterized in the number of participants, and their correctness requires the existence of bounds on message delays and on the relative speed of processes after reaching Global Stabilization Time. These characteristics make partially synchronous algorithms parameterized in the number of processes, and parametric in time bounds, which render automated verification of partially synchronous algorithms challenging. In this paper, we present a case study on formal verification of both safety and liveness of the Chandra and Toueg failure detector that is based on partial synchrony. To this end, we first introduce and formalize the class of symmetric point-to-point algorithms that contains the failure detector. Second, we show that these symmetric point-to-point algorithms have a cutoff, and the cutoff results hold in three models of computation: synchrony, asynchrony, and partial synchrony. As a result, one can verify them by model checking small instances, but the verification problem stays parametric in time. Next, we specify the failure detector and the partial synchrony assumptions in three frameworks: TLA+, IVy, and counter automata. Importantly, we tune our modeling to use the strength of each method: (1) We are using counters to encode message buffers with counter automata, (2) we are using first-order relations to encode message buffers in IVy, and (3) we are using both approaches in TLA+. By running the tools for TLA+ and counter automata, we demonstrate safety for fixed time bounds. By running IVy, we prove safety for arbitrary time bounds. Moreover, we show how to verify liveness of the failure detector by reducing the verification problem to safety verification. Thus, both properties are verified by developing inductive invariants with IVy.
Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish some tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize major approaches in the field, along with their technical strengths/ weaknesses, we have simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and motivates interested readers to consider approaches for designing effective human-in-the-loop solutions.
Data augmentation, the artificial creation of training data for machine learning by transformations, is a widely studied research field across machine learning disciplines. While it is useful for increasing the generalization capabilities of a model, it can also address many other challenges and problems, from overcoming a limited amount of training data over regularizing the objective to limiting the amount data used to protect privacy. Based on a precise description of the goals and applications of data augmentation (C1) and a taxonomy for existing works (C2), this survey is concerned with data augmentation methods for textual classification and aims to achieve a concise and comprehensive overview for researchers and practitioners (C3). Derived from the taxonomy, we divided more than 100 methods into 12 different groupings and provide state-of-the-art references expounding which methods are highly promising (C4). Finally, research perspectives that may constitute a building block for future work are given (C5).
Artificial neural networks thrive in solving the classification problem for a particular rigid task, acquiring knowledge through generalized learning behaviour from a distinct training phase. The resulting network resembles a static entity of knowledge, with endeavours to extend this knowledge without targeting the original task resulting in a catastrophic forgetting. Continual learning shifts this paradigm towards networks that can continually accumulate knowledge over different tasks without the need to retrain from scratch. We focus on task incremental classification, where tasks arrive sequentially and are delineated by clear boundaries. Our main contributions concern 1) a taxonomy and extensive overview of the state-of-the-art, 2) a novel framework to continually determine the stability-plasticity trade-off of the continual learner, 3) a comprehensive experimental comparison of 11 state-of-the-art continual learning methods and 4 baselines. We empirically scrutinize method strengths and weaknesses on three benchmarks, considering Tiny Imagenet and large-scale unbalanced iNaturalist and a sequence of recognition datasets. We study the influence of model capacity, weight decay and dropout regularization, and the order in which the tasks are presented, and qualitatively compare methods in terms of required memory, computation time, and storage.
In recent years, there has been an exponential growth in the number of complex documents and texts that require a deeper understanding of machine learning methods to be able to accurately classify texts in many applications. Many machine learning approaches have achieved surpassing results in natural language processing. The success of these learning algorithms relies on their capacity to understand complex models and non-linear relationships within data. However, finding suitable structures, architectures, and techniques for text classification is a challenge for researchers. In this paper, a brief overview of text classification algorithms is discussed. This overview covers different text feature extractions, dimensionality reduction methods, existing algorithms and techniques, and evaluations methods. Finally, the limitations of each technique and their application in the real-world problem are discussed.
Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.
Time Series Classification (TSC) is an important and challenging problem in data mining. With the increase of time series data availability, hundreds of TSC algorithms have been proposed. Among these methods, only a few have considered Deep Neural Networks (DNNs) to perform this task. This is surprising as deep learning has seen very successful applications in the last years. DNNs have indeed revolutionized the field of computer vision especially with the advent of novel deeper architectures such as Residual and Convolutional Neural Networks. Apart from images, sequential data such as text and audio can also be processed with DNNs to reach state-of-the-art performance for document classification and speech recognition. In this article, we study the current state-of-the-art performance of deep learning algorithms for TSC by presenting an empirical study of the most recent DNN architectures for TSC. We give an overview of the most successful deep learning applications in various time series domains under a unified taxonomy of DNNs for TSC. We also provide an open source deep learning framework to the TSC community where we implemented each of the compared approaches and evaluated them on a univariate TSC benchmark (the UCR/UEA archive) and 12 multivariate time series datasets. By training 8,730 deep learning models on 97 time series datasets, we propose the most exhaustive study of DNNs for TSC to date.