The trustworthiness of DNNs is often challenged by their vulnerability to minor adversarial perturbations, which may not only undermine prediction accuracy (robustness) but also cause biased predictions for similar inputs (individual fairness). Accurate fairness has been recently proposed to enforce a harmonic balance between accuracy and individual fairness. It induces the notion of fairness confusion matrix to categorize predictions as true fair, true biased, false fair, and false biased. This paper proposes a harmonic evaluation approach, RobustFair, for the accurate fairness of DNNs, using adversarial perturbations crafted through fairness confusion directed gradient search. By using Taylor expansions to approximate the ground truths of adversarial instances, RobustFair can particularly identify the robustness defects entangled for spurious fairness, which are often elusive in robustness evaluation, and missing in individual fairness evaluation. RobustFair can boost robustness and individual fairness evaluations by identifying robustness or fairness defects simultaneously. Empirical case studies on fairness benchmark datasets show that, compared with the state-of-the-art white-box robustness and individual fairness testing approaches, RobustFair detects significantly 1.77-11.87 times adversarial perturbations, yielding 1.83-13.12 times biased and 1.53-8.22 times false instances. The adversarial instances can then be effectively exploited to improve the accurate fairness (and hence accuracy and individual fairness) of the original deep neural network through retraining. The empirical case studies further show that the adversarial instances identified by RobustFair outperform those identified by the other testing approaches, in promoting 21% accurate fairness and 19% individual fairness on multiple sensitive attributes, without losing accuracy at all or even promoting it by up to 4%.
The concern about underlying discrimination hidden in ML models is increasing, as ML systems have been widely applied in more and more real-world scenarios and any discrimination hidden in them will directly affect human life. Many techniques have been developed to enhance fairness including commonly-used group fairness measures and several fairness-aware methods combining ensemble learning. However, existing fairness measures can only focus on one aspect -- either group or individual fairness, and the hard compatibility among them indicates a possibility of remaining biases even if one of them is satisfied. Moreover, existing mechanisms to boost fairness usually present empirical results to show validity, yet few of them discuss whether fairness can be boosted with certain theoretical guarantees. To address these issues, we propose a fairness quality measure named discriminative risk in this paper to reflect both individual and group fairness aspects. Furthermore, we investigate the properties of the proposed measure and propose first- and second-order oracle bounds to show that fairness can be boosted via ensemble combination with theoretical learning guarantees. Note that the analysis is suitable for both binary and multi-class classification. A pruning method is also proposed to utilise our proposed measure and comprehensive experiments are conducted to evaluate the effectiveness of the proposed methods in this paper.
While storing documents on the cloud can be attractive, the question remains whether cloud providers can be trusted with storing private documents. Even if trusted, data breaches are ubiquitous. To prevent information leakage one can store documents encrypted. If encrypted under traditional schemes, one loses the ability to perform simple operations over the documents, such as searching through them. Searchable encryption schemes were proposed allowing some search functionality while documents remain encrypted. Orthogonally, research is done to find attacks that exploit search and access pattern leakage that most efficient schemes have. One type of such an attack is the ability to recover plaintext queries. Passive query-recovery attacks on single-keyword search schemes have been proposed in literature, however, conjunctive keyword search has not been considered, although keyword searches with two or three keywords appear more frequently in online searches. We introduce a generic extension strategy for existing passive query-recovery attacks against single-keyword search schemes and explore its applicability for the attack presented by Damie et al. (USENIX Security '21). While the original attack achieves up to a recovery rate of 85% against single-keyword search schemes for an attacker without exact background knowledge, our experiments show that the generic extension to conjunctive queries comes with a significant performance decrease achieving recovery rates of at most 32%. Assuming a stronger attacker with partial knowledge of the indexed document set boosts the recovery rate to 85% for conjunctive keyword queries with two keywords and achieves similar recovery rates as previous attacks by Cash et al. (CCS '15) and Islam et al. (NDSS '12) in the same setting for single-keyword search schemes.
There is a growing interest in single-class modelling and out-of-distribution detection as fully supervised machine learning models cannot reliably identify classes not included in their training. The long tail of infinitely many out-of-distribution classes in real-world scenarios, e.g., for screening, triage, and quality control, means that it is often necessary to train single-class models that represent an expected feature distribution, e.g., from only strictly healthy volunteer data. Conventional supervised machine learning would require the collection of datasets that contain enough samples of all possible diseases in every imaging modality, which is not realistic. Self-supervised learning methods with synthetic anomalies are currently amongst the most promising approaches, alongside generative auto-encoders that analyse the residual reconstruction error. However, all methods suffer from a lack of structured validation, which makes calibration for deployment difficult and dataset-dependant. Our method alleviates this by making use of multiple visually-distinct synthetic anomaly learning tasks for both training and validation. This enables more robust training and generalisation. With our approach we can readily outperform state-of-the-art methods, which we demonstrate on exemplars in brain MRI and chest X-rays. Code is available at //github.com/matt-baugh/many-tasks-make-light-work .
As artificial intelligence plays an increasingly substantial role in decisions affecting humans and society, the accountability of automated decision systems has been receiving increasing attention from researchers and practitioners. Fairness, which is concerned with eliminating unjust treatment and discrimination against individuals or sensitive groups, is a critical aspect of accountability. Yet, for evaluating fairness, there is a plethora of fairness metrics in the literature that employ different perspectives and assumptions that are often incompatible. This work focuses on group fairness. Most group fairness metrics desire a parity between selected statistics computed from confusion matrices belonging to different sensitive groups. Generalizing this intuition, this paper proposes a new equal confusion fairness test to check an automated decision system for fairness and a new confusion parity error to quantify the extent of any unfairness. To further analyze the source of potential unfairness, an appropriate post hoc analysis methodology is also presented. The usefulness of the test, metric, and post hoc analysis is demonstrated via a case study on the controversial case of COMPAS, an automated decision system employed in the US to assist judges with assessing recidivism risks. Overall, the methods and metrics provided here may assess automated decision systems' fairness as part of a more extensive accountability assessment, such as those based on the system accountability benchmark.
Fairness has become increasingly pivotal in medical image recognition. However, without mitigating bias, deploying unfair medical AI systems could harm the interests of underprivileged populations. In this paper, we observe that while features extracted from the deeper layers of neural networks generally offer higher accuracy, fairness conditions deteriorate as we extract features from deeper layers. This phenomenon motivates us to extend the concept of multi-exit frameworks. Unlike existing works mainly focusing on accuracy, our multi-exit framework is fairness-oriented; the internal classifiers are trained to be more accurate and fairer, with high extensibility to apply to most existing fairness-aware frameworks. During inference, any instance with high confidence from an internal classifier is allowed to exit early. Experimental results show that the proposed framework can improve the fairness condition over the state-of-the-art in two dermatological disease datasets.
Accurately estimating gas usage is essential for the efficient functioning of gas distribution networks and saving operational costs. Traditional methods rely on centralized data processing, which poses privacy risks. Federated learning (FL) offers a solution to this problem by enabling local data processing on each participant, such as gas companies and heating stations. However, local training and communication overhead may discourage gas companies and heating stations from actively participating in the FL training process. To address this challenge, we propose a Hierarchical FL Incentive Mechanism for Gas Usage Estimation (HI-GAS), which has been testbedded in the ENN Group, one of the leading players in the natural gas and green energy industry. It is designed to support horizontal FL among gas companies, and vertical FL among each gas company and heating station within a hierarchical FL ecosystem, rewarding participants based on their contributions to FL. In addition, a hierarchical FL model aggregation approach is also proposed to improve the gas usage estimation performance by aggregating models at different levels of the hierarchy. The incentive scheme employs a multi-dimensional contribution-aware reward distribution function that combines the evaluation of data quality and model contribution to incentivize both gas companies and heating stations within their jurisdiction while maintaining fairness. Results of extensive experiments validate the effectiveness of the proposed mechanism.
Along with the increasing availability of health data has come the rise of data-driven models to inform decision-making and policy. These models have the potential to benefit both patients and health care providers but can also exacerbate health inequities. Existing "algorithmic fairness" methods for measuring and correcting model bias fall short of what is needed for health policy in two key ways. First, methods typically focus on a single grouping along which discrimination may occur rather than considering multiple, intersecting groups. Second, in clinical applications, risk prediction is typically used to guide treatment, creating distinct statistical issues that invalidate most existing techniques. We present summary unfairness metrics that build on existing techniques in "counterfactual fairness" to address both challenges. We also develop a complete framework of estimation and inference tools for our metrics, including the unfairness value ("u-value"), used to determine the relative extremity of unfairness, and standard errors and confidence intervals employing an alternative to the standard bootstrap. We demonstrate application of our framework to a COVID-19 risk prediction model deployed in a major Midwestern health system.
While existing work in robust deep learning has focused on small pixel-level $\ell_p$ norm-based perturbations, this may not account for perturbations encountered in several real world settings. In many such cases although test data might not be available, broad specifications about the types of perturbations (such as an unknown degree of rotation) may be known. We consider a setup where robustness is expected over an unseen test domain that is not i.i.d. but deviates from the training domain. While this deviation may not be exactly known, its broad characterization is specified a priori, in terms of attributes. We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space, without having access to the data from the test domain. Our adversarial training solves a min-max optimization problem, with the inner maximization generating adversarial perturbations, and the outer minimization finding model parameters by optimizing the loss on adversarial perturbations generated from the inner maximization. We demonstrate the applicability of our approach on three types of naturally occurring perturbations -- object-related shifts, geometric transformations, and common image corruptions. Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations. We demonstrate the usefulness of the proposed approach by showing the robustness gains of deep neural networks trained using our adversarial training on MNIST, CIFAR-10, and a new variant of the CLEVR dataset.
Deep learning models on graphs have achieved remarkable performance in various graph analysis tasks, e.g., node classification, link prediction and graph clustering. However, they expose uncertainty and unreliability against the well-designed inputs, i.e., adversarial examples. Accordingly, various studies have emerged for both attack and defense addressed in different graph analysis tasks, leading to the arms race in graph adversarial learning. For instance, the attacker has poisoning and evasion attack, and the defense group correspondingly has preprocessing- and adversarial- based methods. Despite the booming works, there still lacks a unified problem definition and a comprehensive review. To bridge this gap, we investigate and summarize the existing works on graph adversarial learning tasks systemically. Specifically, we survey and unify the existing works w.r.t. attack and defense in graph analysis tasks, and give proper definitions and taxonomies at the same time. Besides, we emphasize the importance of related evaluation metrics, and investigate and summarize them comprehensively. Hopefully, our works can serve as a reference for the relevant researchers, thus providing assistance for their studies. More details of our works are available at //github.com/gitgiter/Graph-Adversarial-Learning.
For better user experience and business effectiveness, Click-Through Rate (CTR) prediction has been one of the most important tasks in E-commerce. Although extensive CTR prediction models have been proposed, learning good representation of items from multimodal features is still less investigated, considering an item in E-commerce usually contains multiple heterogeneous modalities. Previous works either concatenate the multiple modality features, that is equivalent to giving a fixed importance weight to each modality; or learn dynamic weights of different modalities for different items through technique like attention mechanism. However, a problem is that there usually exists common redundant information across multiple modalities. The dynamic weights of different modalities computed by using the redundant information may not correctly reflect the different importance of each modality. To address this, we explore the complementarity and redundancy of modalities by considering modality-specific and modality-invariant features differently. We propose a novel Multimodal Adversarial Representation Network (MARN) for the CTR prediction task. A multimodal attention network first calculates the weights of multiple modalities for each item according to its modality-specific features. Then a multimodal adversarial network learns modality-invariant representations where a double-discriminators strategy is introduced. Finally, we achieve the multimodal item representations by combining both modality-specific and modality-invariant representations. We conduct extensive experiments on both public and industrial datasets, and the proposed method consistently achieves remarkable improvements to the state-of-the-art methods. Moreover, the approach has been deployed in an operational E-commerce system and online A/B testing further demonstrates the effectiveness.