亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Autonomous vehicles are gradually entering city roads today, with the help of high-definition maps (HDMaps). However, the reliance on HDMaps prevents autonomous vehicles from stepping into regions without this expensive digital infrastructure. This fact drives many researchers to study online HDMap generation algorithms, but the performance of these algorithms at far regions is still unsatisfying. We present P-MapNet, in which the letter P highlights the fact that we focus on incorporating map priors to improve model performance. Specifically, we exploit priors in both SDMap and HDMap. On one hand, we extract weakly aligned SDMap from OpenStreetMap, and encode it as an additional conditioning branch. Despite the misalignment challenge, our attention-based architecture adaptively attends to relevant SDMap skeletons and significantly improves performance. On the other hand, we exploit a masked autoencoder to capture the prior distribution of HDMap, which can serve as a refinement module to mitigate occlusions and artifacts. We benchmark on the nuScenes and Argoverse2 datasets. Through comprehensive experiments, we show that: (1) our SDMap prior can improve online map generation performance, using both rasterized (by up to $+18.73$ $\rm mIoU$) and vectorized (by up to $+8.50$ $\rm mAP$) output representations. (2) our HDMap prior can improve map perceptual metrics by up to $6.34\%$. (3) P-MapNet can be switched into different inference modes that covers different regions of the accuracy-efficiency trade-off landscape. (4) P-MapNet is a far-seeing solution that brings larger improvements on longer ranges. Codes and models are publicly available at //jike5.github.io/P-MapNet.

相關內容

Performance:International Symposium on Computer Performance Modeling, Measurements and Evaluation。 Explanation:計算機性能建模、測量和評估國際研討會。 Publisher:ACM。 SIT:

We consider the safety-oriented performance of 3D object detectors in autonomous driving contexts. Specifically, despite impressive results shown by the mass literature, developers often find it hard to ensure the safe deployment of these learning-based perception models. Attributing the challenge to the lack of safety-oriented metrics, we hereby present uncompromising spatial constraints (USC), which characterize a simple yet important localization requirement demanding the predictions to fully cover the objects when seen from the autonomous vehicle. The constraints, as we formulate using the perspective and bird's-eye views, can be naturally reflected by quantitative measures, such that having an object detector with a higher score implies a lower risk of collision. Finally, beyond model evaluation, we incorporate the quantitative measures into common loss functions to enable safety-oriented fine-tuning for existing models. With experiments using the nuScenes dataset and a closed-loop simulation, our work demonstrates such considerations of safety notions at the perception level not only improve model performances beyond accuracy but also allow for a more direct linkage to actual system safety.

As the era of autonomous cyber-physical systems (ACPSs), such as unmanned aerial vehicles and self-driving cars, unfolds, the demand for robust testing methodologies is key to realizing the adoption of such systems in real-world scenarios. However, traditional software testing paradigms face unprecedented challenges in ensuring the safety and reliability of these systems. In response, this paper pioneers a strategic roadmap for simulation-based testing of ACPSs, specifically focusing on autonomous systems. Our paper discusses the relevant challenges and obstacles of ACPSs, focusing on test automation and quality assurance, hence advocating for tailored solutions to address the unique demands of autonomous systems. While providing concrete definitions of test cases within simulation environments, we also accentuate the need to create new benchmark assets and the development of automated tools tailored explicitly for autonomous systems in the software engineering community. This paper not only highlights the relevant, pressing issues the software engineering community should focus on (in terms of practices, expected automation, and paradigms), but it also outlines ways to tackle them. By outlining the various domains and challenges of simulation-based testing/development for ACPSs, we provide directions for future research efforts.

The rampant occurrence of cybersecurity breaches imposes substantial limitations on the progress of network infrastructures, leading to compromised data, financial losses, potential harm to individuals, and disruptions in essential services. The current security landscape demands the urgent development of a holistic security assessment solution that encompasses vulnerability analysis and investigates the potential exploitation of these vulnerabilities as attack paths. In this paper, we propose Graphene, an advanced system designed to provide a detailed analysis of the security posture of computing infrastructures. Using user-provided information, such as device details and software versions, Graphene performs a comprehensive security assessment. This assessment includes identifying associated vulnerabilities and constructing potential attack graphs that adversaries can exploit. Furthermore, Graphene evaluates the exploitability of these attack paths and quantifies the overall security posture through a scoring mechanism. The system takes a holistic approach by analyzing security layers encompassing hardware, system, network, and cryptography. Furthermore, Graphene delves into the interconnections between these layers, exploring how vulnerabilities in one layer can be leveraged to exploit vulnerabilities in others. In this paper, we present the end-to-end pipeline implemented in Graphene, showcasing the systematic approach adopted for conducting this thorough security analysis.

The Segment Anything Model (SAM) and CLIP are remarkable vision foundation models (VFMs). SAM, a prompt driven segmentation model, excels in segmentation tasks across diverse domains, while CLIP is renowned for its zero shot recognition capabilities. However, their unified potential has not yet been explored in medical image segmentation. To adapt SAM to medical imaging, existing methods primarily rely on tuning strategies that require extensive data or prior prompts tailored to the specific task, making it particularly challenging when only a limited number of data samples are available. This work presents an in depth exploration of integrating SAM and CLIP into a unified framework for medical image segmentation. Specifically, we propose a simple unified framework, SaLIP, for organ segmentation. Initially, SAM is used for part based segmentation within the image, followed by CLIP to retrieve the mask corresponding to the region of interest (ROI) from the pool of SAM generated masks. Finally, SAM is prompted by the retrieved ROI to segment a specific organ. Thus, SaLIP is training and fine tuning free and does not rely on domain expertise or labeled data for prompt engineering. Our method shows substantial enhancements in zero shot segmentation, showcasing notable improvements in DICE scores across diverse segmentation tasks like brain (63.46%), lung (50.11%), and fetal head (30.82%), when compared to un prompted SAM. Code and text prompts are available at: //github.com/aleemsidra/SaLIP.

With the emergence of Artificial Intelligence (AI)-based decision-making, explanations help increase new technology adoption through enhanced trust and reliability. However, our experimental study challenges the notion that every user universally values explanations. We argue that the agreement with AI suggestions, whether accompanied by explanations or not, is influenced by individual differences in personality traits and the users' comfort with technology. We found that people with higher neuroticism and lower technological comfort showed more agreement with the recommendations without explanations. As more users become exposed to eXplainable AI (XAI) and AI-based systems, we argue that the XAI design should not provide explanations for users with high neuroticism and low technology comfort. Prioritizing user personalities in XAI systems will help users become better collaborators of AI systems.

The integration of artificial intelligence (AI) and mobile networks is regarded as one of the most important scenarios for 6G. In 6G, a major objective is to realize the efficient transmission of task-relevant data. Then a key problem arises, how to design collaborative AI models for the device side and the network side, so that the transmitted data between the device and the network is efficient enough, which means the transmission overhead is low but the AI task result is accurate. In this paper, we propose the multi-link information bottleneck (ML-IB) scheme for such collaborative models design. We formulate our problem based on a novel performance metric, which can evaluate both task accuracy and transmission overhead. Then we introduce a quantizer that is adjustable in the quantization bit depth, amplitudes, and breakpoints. Given the infeasibility of calculating our proposed metric on high-dimensional data, we establish a variational upper bound for this metric. However, due to the incorporation of quantization, the closed form of the variational upper bound remains uncomputable. Hence, we employ the Log-Sum Inequality to derive an approximation and provide a theoretical guarantee. Based on this, we devise the quantized multi-link information bottleneck (QML-IB) algorithm for collaborative AI models generation. Finally, numerical experiments demonstrate the superior performance of our QML-IB algorithm compared to the state-of-the-art algorithm.

In recent years, Transformer networks have shown remarkable performance in speech recognition tasks. However, their deployment poses challenges due to high computational and storage resource requirements. To address this issue, a lightweight model called EfficientASR is proposed in this paper, aiming to enhance the versatility of Transformer models. EfficientASR employs two primary modules: Shared Residual Multi-Head Attention (SRMHA) and Chunk-Level Feedforward Networks (CFFN). The SRMHA module effectively reduces redundant computations in the network, while the CFFN module captures spatial knowledge and reduces the number of parameters. The effectiveness of the EfficientASR model is validated on two public datasets, namely Aishell-1 and HKUST. Experimental results demonstrate a 36% reduction in parameters compared to the baseline Transformer network, along with improvements of 0.3% and 0.2% in Character Error Rate (CER) on the Aishell-1 and HKUST datasets, respectively.

Recommender system is one of the most important information services on today's Internet. Recently, graph neural networks have become the new state-of-the-art approach of recommender systems. In this survey, we conduct a comprehensive review of the literature in graph neural network-based recommender systems. We first introduce the background and the history of the development of both recommender systems and graph neural networks. For recommender systems, in general, there are four aspects for categorizing existing works: stage, scenario, objective, and application. For graph neural networks, the existing methods consist of two categories, spectral models and spatial ones. We then discuss the motivation of applying graph neural networks into recommender systems, mainly consisting of the high-order connectivity, the structural property of data, and the enhanced supervision signal. We then systematically analyze the challenges in graph construction, embedding propagation/aggregation, model optimization, and computation efficiency. Afterward and primarily, we provide a comprehensive overview of a multitude of existing works of graph neural network-based recommender systems, following the taxonomy above. Finally, we raise discussions on the open problems and promising future directions of this area. We summarize the representative papers along with their codes repositories in //github.com/tsinghua-fib-lab/GNN-Recommender-Systems.

Deep convolutional neural networks (CNNs) have recently achieved great success in many visual recognition tasks. However, existing deep neural network models are computationally expensive and memory intensive, hindering their deployment in devices with low memory resources or in applications with strict latency requirements. Therefore, a natural thought is to perform model compression and acceleration in deep networks without significantly decreasing the model performance. During the past few years, tremendous progress has been made in this area. In this paper, we survey the recent advanced techniques for compacting and accelerating CNNs model developed. These techniques are roughly categorized into four schemes: parameter pruning and sharing, low-rank factorization, transferred/compact convolutional filters, and knowledge distillation. Methods of parameter pruning and sharing will be described at the beginning, after that the other techniques will be introduced. For each scheme, we provide insightful analysis regarding the performance, related applications, advantages, and drawbacks etc. Then we will go through a few very recent additional successful methods, for example, dynamic capacity networks and stochastic depths networks. After that, we survey the evaluation matrix, the main datasets used for evaluating the model performance and recent benchmarking efforts. Finally, we conclude this paper, discuss remaining challenges and possible directions on this topic.

Convolutional networks (ConvNets) have achieved great successes in various challenging vision tasks. However, the performance of ConvNets would degrade when encountering the domain shift. The domain adaptation is more significant while challenging in the field of biomedical image analysis, where cross-modality data have largely different distributions. Given that annotating the medical data is especially expensive, the supervised transfer learning approaches are not quite optimal. In this paper, we propose an unsupervised domain adaptation framework with adversarial learning for cross-modality biomedical image segmentations. Specifically, our model is based on a dilated fully convolutional network for pixel-wise prediction. Moreover, we build a plug-and-play domain adaptation module (DAM) to map the target input to features which are aligned with source domain feature space. A domain critic module (DCM) is set up for discriminating the feature space of both domains. We optimize the DAM and DCM via an adversarial loss without using any target domain label. Our proposed method is validated by adapting a ConvNet trained with MRI images to unpaired CT data for cardiac structures segmentations, and achieved very promising results.

北京阿比特科技有限公司