亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Underwater object detection is a crucial and challenging problem in marine engineering and aquatic robot. The difficulty is partly because of the degradation of underwater images caused by light selective absorption and scattering. Intuitively, enhancing underwater images can benefit high-level applications like underwater object detection. However, it is still unclear whether all object detectors need underwater image enhancement as pre-processing. We therefore pose the questions "Does underwater image enhancement really improve underwater object detection?" and "How does underwater image enhancement contribute to underwater object detection?". With these two questions, we conduct extensive studies. Specifically, we use 18 state-of-the-art underwater image enhancement algorithms, covering traditional, CNN-based, and GAN-based algorithms, to pre-process underwater object detection data. Then, we retrain 7 popular deep learning-based object detectors using the corresponding results enhanced by different algorithms, obtaining 126 underwater object detection models. Coupled with 7 object detection models retrained using raw underwater images, we employ these 133 models to comprehensively analyze the effect of underwater image enhancement on underwater object detection. We expect this study can provide sufficient exploration to answer the aforementioned questions and draw more attention of the community to the joint problem of underwater image enhancement and underwater object detection. The pre-trained models and results are publicly available and will be regularly updated. Project page: //github.com/BIGWangYuDong/lqit/tree/main/configs/detection/uw_enhancement_affect_detection.

相關內容

目標檢測,也叫目標提取,是一種與計算機視覺和圖像處理有關的計算機技術,用于檢測數字圖像和視頻中特定類別的語義對象(例如人,建筑物或汽車)的實例。深入研究的對象檢測領域包括面部檢測和行人檢測。 對象檢測在計算機視覺的許多領域都有應用,包括圖像檢索和視頻監視。

知識薈萃

精品入門和進階教程、論文和代碼整理等

更多

查看相關VIP內容、論文、資訊等

Cascades are a classical strategy to enable inference cost to vary adaptively across samples, wherein a sequence of classifiers are invoked in turn. A deferral rule determines whether to invoke the next classifier in the sequence, or to terminate prediction. One simple deferral rule employs the confidence of the current classifier, e.g., based on the maximum predicted softmax probability. Despite being oblivious to the structure of the cascade -- e.g., not modelling the errors of downstream models -- such confidence-based deferral often works remarkably well in practice. In this paper, we seek to better understand the conditions under which confidence-based deferral may fail, and when alternate deferral strategies can perform better. We first present a theoretical characterisation of the optimal deferral rule, which precisely characterises settings under which confidence-based deferral may suffer. We then study post-hoc deferral mechanisms, and demonstrate they can significantly improve upon confidence-based deferral in settings where (i) downstream models are specialists that only work well on a subset of inputs, (ii) samples are subject to label noise, and (iii) there is distribution shift between the train and test set.

Large Language Models are becoming an increasingly popular tool for software development. Their ability to model and generate source code has been demonstrated in a variety of contexts, including code completion, summarization, translation, and lookup. However, they often struggle to generate code for more complex tasks. In this paper, we explore the ability of state-of-the-art language models to generate parallel code. We propose a benchmark, PCGBench, consisting of a set of 420 tasks for evaluating the ability of language models to generate parallel code, and we evaluate the performance of several state-of-the-art open- and closed-source language models on these tasks. We introduce novel metrics for comparing parallel code generation performance and use them to explore how well each LLM performs on various parallel programming models and computational problem types.

It is tempting to assume that because effectiveness metrics have free choice to assign scores to search engine result pages (SERPs) there must thus be a similar degree of freedom as to the relative order that SERP pairs can be put into. In fact that second freedom is, to a considerable degree, illusory. That's because if one SERP in a pair has been given a certain score by a metric, fundamental ordering constraints in many cases then dictate that the score for the second SERP must be either not less than, or not greater than, the score assigned to the first SERP. We refer to these fixed relationships as innate pairwise SERP orderings. Our first goal in this work is to describe and defend those pairwise SERP relationship constraints, and tabulate their relative occurrence via both exhaustive and empirical experimentation. We then consider how to employ such innate pairwise relationships in IR experiments, leading to a proposal for a new measurement paradigm. Specifically, we argue that tables of results in which many different metrics are listed for champion versus challenger system comparisons should be avoided; and that instead a single metric be argued for in principled terms, with any relationships identified by that metric then reinforced via an assessment of the innate relationship as to whether other metrics - indeed, all other metrics - are likely to yield the same system-vs-system outcome.

Concealed object segmentation (COS) is a challenging task that involves localizing and segmenting those concealed objects that are visually blended with their surrounding environments. Despite achieving remarkable success, existing COS segmenters still struggle to achieve complete segmentation results in extremely concealed scenarios. In this paper, we propose a Hierarchical Coherence Modeling (HCM) segmenter for COS, aiming to address this incomplete segmentation limitation. In specific, HCM promotes feature coherence by leveraging the intra-stage coherence and cross-stage coherence modules, exploring feature correlations at both the single-stage and contextual levels. Additionally, we introduce the reversible re-calibration decoder to detect previously undetected parts in low-confidence regions, resulting in further enhancing segmentation performance. Extensive experiments conducted on three COS tasks, including camouflaged object detection, polyp image segmentation, and transparent object detection, demonstrate the promising results achieved by the proposed HCM segmenter.

Speech disfluency modeling is the bottleneck for both speech therapy and language learning. However, there is no effective AI solution to systematically tackle this problem. We solidify the concept of disfluent speech and disfluent speech modeling. We then present Hierarchical Unconstrained Disfluency Modeling (H-UDM) approach, the hierarchical extension of UDM that addresses both disfluency transcription and detection to eliminate the need for extensive manual annotation. Our experimental findings serve as clear evidence of the effectiveness and reliability of the methods we have introduced, encompassing both transcription and detection tasks.

Collecting relevant and high-quality data is integral to the development of effective Software Vulnerability (SV) prediction models. Most of the current SV datasets rely on SV-fixing commits to extract vulnerable functions and lines. However, none of these datasets have considered latent SVs existing between the introduction and fix of the collected SVs. There is also little known about the usefulness of these latent SVs for SV prediction. To bridge these gaps, we conduct a large-scale study on the latent vulnerable functions in two commonly used SV datasets and their utilization for function-level and line-level SV predictions. Leveraging the state-of-the-art SZZ algorithm, we identify more than 100k latent vulnerable functions in the studied datasets. We find that these latent functions can increase the number of SVs by 4x on average and correct up to 5k mislabeled functions, yet they have a noise level of around 6%. Despite the noise, we show that the state-of-the-art SV prediction model can significantly benefit from such latent SVs. The improvements are up to 24.5% in the performance (F1-Score) of function-level SV predictions and up to 67% in the effectiveness of localizing vulnerable lines. Overall, our study presents the first promising step toward the use of latent SVs to improve the quality of SV datasets and enhance the performance of SV prediction tasks.

Human cognitive performance is enhanced by the use of tools. For example, a human can produce a much greater, and more accurate, volume of mathematical calculation in a unit of time using a calculator or a spreadsheet application on a computer. Such tools have taken over the burden of lower level cognitive grunt work but the human still serves the role of the expert performing higher level thinking and reasoning. Recently, however, unsupervised, deep, machine learning has produced cognitive systems able to outperform humans in several domains. When humans use these tools in a human cog ensemble, the cognitive ability of the human is augmented. In some cases, even non experts can achieve, and even exceed, the performance of experts in a particular domain, synthetic expertise. A new cognitive system, ChatGPT, has burst onto the scene during the past year. This paper investigates human cognitive augmentation due to using ChatGPT by presenting the results of two experiments comparing responses created using ChatGPT with results created not using ChatGPT. We find using ChatGPT does not always result in cognitive augmentation and does not yet replace human judgement, discernment, and evaluation in certain types of tasks. In fact, ChatGPT was observed to result in misleading users resulting in negative cognitive augmentation.

In this work, we investigate the controllability of large language models (LLMs) on scientific summarization tasks. We identify key stylistic and content coverage factors that characterize different types of summaries such as paper reviews, abstracts, and lay summaries. By controlling stylistic features, we find that non-fine-tuned LLMs outperform humans in the MuP review generation task, both in terms of similarity to reference summaries and human preferences. Also, we show that we can improve the controllability of LLMs with keyword-based classifier-free guidance (CFG) while achieving lexical overlap comparable to strong fine-tuned baselines on arXiv and PubMed. However, our results also indicate that LLMs cannot consistently generate long summaries with more than 8 sentences. Furthermore, these models exhibit limited capacity to produce highly abstractive lay summaries. Although LLMs demonstrate strong generic summarization competency, sophisticated content control without costly fine-tuning remains an open problem for domain-specific applications.

Feature attribution methods are popular in interpretable machine learning. These methods compute the attribution of each input feature to represent its importance, but there is no consensus on the definition of "attribution", leading to many competing methods with little systematic evaluation, complicated in particular by the lack of ground truth attribution. To address this, we propose a dataset modification procedure to induce such ground truth. Using this procedure, we evaluate three common methods: saliency maps, rationales, and attentions. We identify several deficiencies and add new perspectives to the growing body of evidence questioning the correctness and reliability of these methods applied on datasets in the wild. We further discuss possible avenues for remedy and recommend new attribution methods to be tested against ground truth before deployment. The code is available at \url{//github.com/YilunZhou/feature-attribution-evaluation}.

Non-convex optimization is ubiquitous in modern machine learning. Researchers devise non-convex objective functions and optimize them using off-the-shelf optimizers such as stochastic gradient descent and its variants, which leverage the local geometry and update iteratively. Even though solving non-convex functions is NP-hard in the worst case, the optimization quality in practice is often not an issue -- optimizers are largely believed to find approximate global minima. Researchers hypothesize a unified explanation for this intriguing phenomenon: most of the local minima of the practically-used objectives are approximately global minima. We rigorously formalize it for concrete instances of machine learning problems.

北京阿比特科技有限公司