In chronic diseases, obtaining a correct diagnosis and providing the most appropriate treatments often is not enough to guarantee an improvement of the clinical condition of a patient. Poor adherence to medical prescriptions constitutes one of the main causes preventing achievement of therapeutic goals. This is generally true especially for certain diseases and specific target patients, such as children. An engaging and entertaining technology can be exploited in support of clinical practices to achieve better health outcomes. Our assumption is that a gamified session with a humanoid robot, compared to the usual methodologies for therapeutic education, can be more incisive in learning the correct inhalation procedure in children affected by asthma. In this perspective, we describe an interactive module implemented on the Pepper robotic platform and the setting of a study that was planned in 2020 to be held at the Pneumoallergology Pediatric clinic of CNR in Palermo. The study was canceled due to the COVID-19 pandemic. Our long-term goal is to assess, by means of a qualitative-quantitative survey plan, the impact of such an educational action, evaluating possible improvement in the adherence to the treatment.
We discretize a risk-neutral optimal control problem governed by a linear elliptic partial differential equation with random inputs using a Monte Carlo sample-based approximation and a finite element discretization, yielding finite dimensional control problems. We establish an exponential tail bound for the distance between the finite dimensional problems' solutions and the risk-neutral problem's solution. The tail bound implies that solutions to the risk-neutral optimal control problem can be reliably estimated with the solutions to the finite dimensional control problems. Numerical simulations illustrate our theoretical findings.
Increasingly, the combination of clinical judgment and predictive risk modelling have been assisting social workers to segregate children at risk of maltreatment and recommend potential interventions of authorities. A critical concern among governments and research communities worldwide is that misinterpretations due to poor modelling techniques will often result in biased outcomes for people with certain characteristics (e.g., race, socioeconomic status). In the New Zealand care and protection system, the over-representation of M\=aori might be incidentally intensified by predictive risk models leading to possible cycles of bias towards M\=aori, ending disadvantaged or discriminated against, in decision-making policies. Ensuring these models can identify the risk as accurately as possible and do not unintentionally add to an over-representation of M\=aori becomes a crucial matter. In this article we address this concern with the application of predictive risk modelling in the New Zealand care and protection system. We study potential factors that might impact the accuracy and fairness of such statistical models along with possible approaches for improvement.
Practitioners in diverse fields such as healthcare, economics and education are eager to apply machine learning to improve decision making. The cost and impracticality of performing experiments and a recent monumental increase in electronic record keeping has brought attention to the problem of evaluating decisions based on non-experimental observational data. This is the setting of this work. In particular, we study estimation of individual-level causal effects, such as a single patient's response to alternative medication, from recorded contexts, decisions and outcomes. We give generalization bounds on the error in estimated effects based on distance measures between groups receiving different treatments, allowing for sample re-weighting. We provide conditions under which our bound is tight and show how it relates to results for unsupervised domain adaptation. Led by our theoretical results, we devise representation learning algorithms that minimize our bound, by regularizing the representation's induced treatment group distance, and encourage sharing of information between treatment groups. We extend these algorithms to simultaneously learn a weighted representation to further reduce treatment group distances. Finally, an experimental evaluation on real and synthetic data shows the value of our proposed representation architecture and regularization scheme.
The effective control of infectious diseases relies on accurate assessment of the impact of interventions, which is often hindered by the complex dynamics of the spread of disease. We propose a Beta-Dirichlet switching state-space transmission model to track underlying dynamics of disease and evaluate the effectiveness of interventions simultaneously. As time evolves, the switching mechanism introduced in the susceptible-exposed-infected-recovered (SEIR) model is able to capture the timing and magnitude of changes in the transmission rate due to the effectiveness of control measures. The implementation of this model is based on a particle Markov Chain Monte Carlo algorithm, which can estimate the time evolution of SEIR states, switching states, and high-dimensional parameters efficiently. The efficacy of our model and estimation procedure are demonstrated through simulation studies. With a real-world application to British Columbia's COVID-19 outbreak, it indicates approximately a 66.6\% reduction of transmission rate following interventions such as distancing, closures and vaccination. Our proposed model provides a promising tool to inform public health policies aimed at studying the underlying dynamics and evaluating of the effectiveness of interventions during the spread of the disease.
In recurrent neural networks, learning long-term dependency is the main difficulty due to the vanishing and exploding gradient problem. Many researchers are dedicated to solving this issue and they proposed many algorithms. Although these algorithms have achieved great success, understanding how the information decays remains an open problem. In this paper, we study the dynamics of the hidden state in recurrent neural networks. We propose a new perspective to analyze the hidden state space based on an eigen decomposition of the weight matrix. We start the analysis by linear state space model and explain the function of preserving information in activation functions. We provide an explanation for long-term dependency based on the eigen analysis. We also point out the different behavior of eigenvalues for regression tasks and classification tasks. From the observations on well-trained recurrent neural networks, we proposed a new initialization method for recurrent neural networks, which improves consistently performance. It can be applied to vanilla-RNN, LSTM, and GRU. We test on many datasets, such as Tomita Grammars, pixel-by-pixel MNIST datasets, and machine translation datasets (Multi30k). It outperforms the Xavier initializer and kaiming initializer as well as other RNN-only initializers like IRNN and sp-RNN in several tasks.
Clinical trials are vital in advancing drug development and evidence-based medicine, but their success is often hindered by challenges in patient recruitment. In this work, we investigate the potential of large language models (LLMs) to assist individual patients and referral physicians in identifying suitable clinical trials from an extensive selection. Specifically, we introduce TrialGPT, a novel architecture employing LLMs to predict criterion-level eligibility with detailed explanations, which are then aggregated for ranking and excluding candidate clinical trials based on free-text patient notes. We evaluate TrialGPT on three publicly available cohorts of 184 patients and 18,238 annotated clinical trials. The experimental results demonstrate several key findings: First, TrialGPT achieves high criterion-level prediction accuracy with faithful explanations. Second, the aggregated trial-level TrialGPT scores are highly correlated with expert eligibility annotations. Third, these scores prove effective in ranking clinical trials and exclude ineligible candidates. Our error analysis suggests that current LLMs still make some mistakes due to limited medical knowledge and domain-specific context understanding. Nonetheless, we believe the explanatory capabilities of LLMs are highly valuable. Future research is warranted on how such AI assistants can be integrated into the routine trial matching workflow in real-world settings to improve its efficiency.
One of the most challenging fields where Artificial Intelligence (AI) can be applied is lung cancer research, specifically non-small cell lung cancer (NSCLC). In particular, overall survival (OS), the time between diagnosis and death, is a vital indicator of patient status, enabling tailored treatment and improved OS rates. In this analysis, there are two challenges to take into account. First, few studies effectively exploit the information available from each patient, leveraging both uncensored (i.e., dead) and censored (i.e., survivors) patients, considering also the events' time. Second, the handling of incomplete data is a common issue in the medical field. This problem is typically tackled through the use of imputation methods. Our objective is to present an AI model able to overcome these limits, effectively learning from both censored and uncensored patients and their available features, for the prediction of OS for NSCLC patients. We present a novel approach to survival analysis with missing values in the context of NSCLC, which exploits the strengths of the transformer architecture to account only for available features without requiring any imputation strategy. By making use of ad-hoc losses for OS, it is able to account for both censored and uncensored patients, as well as changes in risks over time. We compared our method with state-of-the-art models for survival analysis coupled with different imputation strategies. We evaluated the results obtained over a period of 6 years using different time granularities obtaining a Ct-index, a time-dependent variant of the C-index, of 71.97, 77.58 and 80.72 for time units of 1 month, 1 year and 2 years, respectively, outperforming all state-of-the-art methods regardless of the imputation method used.
Understanding causality helps to structure interventions to achieve specific goals and enables predictions under interventions. With the growing importance of learning causal relationships, causal discovery tasks have transitioned from using traditional methods to infer potential causal structures from observational data to the field of pattern recognition involved in deep learning. The rapid accumulation of massive data promotes the emergence of causal search methods with brilliant scalability. Existing summaries of causal discovery methods mainly focus on traditional methods based on constraints, scores and FCMs, there is a lack of perfect sorting and elaboration for deep learning-based methods, also lacking some considers and exploration of causal discovery methods from the perspective of variable paradigms. Therefore, we divide the possible causal discovery tasks into three types according to the variable paradigm and give the definitions of the three tasks respectively, define and instantiate the relevant datasets for each task and the final causal model constructed at the same time, then reviews the main existing causal discovery methods for different tasks. Finally, we propose some roadmaps from different perspectives for the current research gaps in the field of causal discovery and point out future research directions.
We consider the problem of explaining the predictions of graph neural networks (GNNs), which otherwise are considered as black boxes. Existing methods invariably focus on explaining the importance of graph nodes or edges but ignore the substructures of graphs, which are more intuitive and human-intelligible. In this work, we propose a novel method, known as SubgraphX, to explain GNNs by identifying important subgraphs. Given a trained GNN model and an input graph, our SubgraphX explains its predictions by efficiently exploring different subgraphs with Monte Carlo tree search. To make the tree search more effective, we propose to use Shapley values as a measure of subgraph importance, which can also capture the interactions among different subgraphs. To expedite computations, we propose efficient approximation schemes to compute Shapley values for graph data. Our work represents the first attempt to explain GNNs via identifying subgraphs explicitly and directly. Experimental results show that our SubgraphX achieves significantly improved explanations, while keeping computations at a reasonable level.
Object detection typically assumes that training and test data are drawn from an identical distribution, which, however, does not always hold in practice. Such a distribution mismatch will lead to a significant performance drop. In this work, we aim to improve the cross-domain robustness of object detection. We tackle the domain shift on two levels: 1) the image-level shift, such as image style, illumination, etc, and 2) the instance-level shift, such as object appearance, size, etc. We build our approach based on the recent state-of-the-art Faster R-CNN model, and design two domain adaptation components, on image level and instance level, to reduce the domain discrepancy. The two domain adaptation components are based on H-divergence theory, and are implemented by learning a domain classifier in adversarial training manner. The domain classifiers on different levels are further reinforced with a consistency regularization to learn a domain-invariant region proposal network (RPN) in the Faster R-CNN model. We evaluate our newly proposed approach using multiple datasets including Cityscapes, KITTI, SIM10K, etc. The results demonstrate the effectiveness of our proposed approach for robust object detection in various domain shift scenarios.