亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A mapping $\alpha : V(G) \to V(H)$ from the vertex set of one graph $G$ to another graph $H$ is an isometric embedding if the shortest path distance between any two vertices in $G$ equals the distance between their images in $H$. Here, we consider isometric embeddings of a weighted graph $G$ into unweighted Hamming graphs, called Hamming embeddings, when $G$ satisfies the property that every edge is a shortest path between its endpoints. Using a Cartesian product decomposition of $G$ called its pseudofactorization, we show that every Hamming embedding of $G$ may be partitioned into Hamming embeddings for each irreducible pseudofactor graph of $G$, which we call its canonical partition. This implies that $G$ permits a Hamming embedding if and only if each of its irreducible pseudofactors is Hamming embeddable. This result extends prior work on unweighted graphs that showed that an unweighted graph permits a Hamming embedding if and only if each irreducible pseudofactor is a complete graph. When a graph $G$ has nontrivial pseudofactors, determining whether $G$ has a Hamming embedding can be simplified to checking embeddability of two or more smaller graphs.

相關內容

This paper studies the problem of matching two complete graphs with edge weights correlated through latent geometries, extending a recent line of research on random graph matching with independent edge weights to geometric models. Specifically, given a random permutation $\pi^*$ on $[n]$ and $n$ iid pairs of correlated Gaussian vectors $\{X_{\pi^*(i)}, Y_i\}$ in $\mathbb{R}^d$ with noise parameter $\sigma$, the edge weights are given by $A_{ij}=\kappa(X_i,X_j)$ and $B_{ij}=\kappa(Y_i,Y_j)$ for some link function $\kappa$. The goal is to recover the hidden vertex correspondence $\pi^*$ based on the observation of $A$ and $B$. We focus on the dot-product model with $\kappa(x,y)=\langle x, y \rangle$ and Euclidean distance model with $\kappa(x,y)=\|x-y\|^2$, in the low-dimensional regime of $d=o(\log n)$ wherein the underlying geometric structures are most evident. We derive an approximate maximum likelihood estimator, which provably achieves, with high probability, perfect recovery of $\pi^*$ when $\sigma=o(n^{-2/d})$ and almost perfect recovery with a vanishing fraction of errors when $\sigma=o(n^{-1/d})$. Furthermore, these conditions are shown to be information-theoretically optimal even when the latent coordinates $\{X_i\}$ and $\{Y_i\}$ are observed, complementing the recent results of [DCK19] and [KNW22] in geometric models of the planted bipartite matching problem. As a side discovery, we show that the celebrated spectral algorithm of [Ume88] emerges as a further approximation to the maximum likelihood in the geometric model.

In this paper, we consider two fundamental symmetric kernels in linear algebra: the Cholesky factorization and the symmetric rank-$k$ update (SYRK), with the classical three nested loops algorithms for these kernels. In addition, we consider a machine model with a fast memory of size $S$ and an unbounded slow memory. In this model, all computations must be performed on operands in fast memory, and the goal is to minimize the amount of communication between slow and fast memories. As the set of computations is fixed by the choice of the algorithm, only the ordering of the computations (the schedule) directly influences the volume of communications.We prove lower bounds of $\frac{1}{3\sqrt{2}}\frac{N^3}{\sqrt{S}}$ for the communication volume of the Cholesky factorization of an $N\times N$ symmetric positive definite matrix, and of $\frac{1}{\sqrt{2}}\frac{N^2M}{\sqrt{S}}$ for the SYRK computation of $\mat{A}\cdot\transpose{\mat{A}}$, where $\mathbf{A}$ is an $N\times M$ matrix. Both bounds improve the best known lower bounds from the literature by a factor $\sqrt{2}$.In addition, we present two out-of-core, sequential algorithms with matching communication volume: \TBS for SYRK, with a volume of $\frac{1}{\sqrt{2}}\frac{N^2M}{\sqrt{S}} + \bigo{NM\log N}$, and \LBC for Cholesky, with a volume of $\frac{1}{3\sqrt{2}}\frac{N^3}{\sqrt{S}} + \bigo{N^{5/2}}$. Both algorithms improve over the best known algorithms from the literature by a factor $\sqrt{2}$, and prove that the leading terms in our lower bounds cannot be improved further. This work shows that the operational intensity of symmetric kernels like SYRK or Cholesky is intrinsically higher (by a factor $\sqrt{2}$) than that of corresponding non-symmetric kernels (GEMM and LU factorization).

Given a metric space $\mathcal{M}=(X,\delta)$, a weighted graph $G$ over $X$ is a metric $t$-spanner of $\mathcal{M}$ if for every $u,v \in X$, $\delta(u,v)\le d_G(u,v)\le t\cdot \delta(u,v)$, where $d_G$ is the shortest path metric in $G$. In this paper, we construct spanners for finite sets in metric spaces in the online setting. Here, we are given a sequence of points $(s_1, \ldots, s_n)$, where the points are presented one at a time (i.e., after $i$ steps, we saw $S_i = \{s_1, \ldots , s_i\}$). The algorithm is allowed to add edges to the spanner when a new point arrives, however, it is not allowed to remove any edge from the spanner. The goal is to maintain a $t$-spanner $G_i$ for $S_i$ for all $i$, while minimizing the number of edges, and their total weight. We construct online $(1+\varepsilon)$-spanners in Euclidean $d$-space, $(2k-1)(1+\varepsilon)$-spanners for general metrics, and $(2+\varepsilon)$-spanners for ultrametrics. Most notably, in Euclidean plane, we construct a $(1+\varepsilon)$-spanner with competitive ratio $O(\varepsilon^{-3/2}\log\varepsilon^{-1}\log n)$, bypassing the classic lower bound $\Omega(\varepsilon^{-2})$ for lightness, which compares the weight of the spanner, to that of the MST.

We study the problem of learning a hypergraph via edge detecting queries. In this problem, a learner queries subsets of vertices of a hidden hypergraph and observes whether these subsets contain an edge or not. In general, learning a hypergraph with $m$ edges of maximum size $d$ requires $\Omega((2m/d)^{d/2})$ queries. In this paper, we aim to identify families of hypergraphs that can be learned without suffering from a query complexity that grows exponentially in the size of the edges. We show that hypermatchings and low-degree near-uniform hypergraphs with $n$ vertices are learnable with poly$(n)$ queries. For learning hypermatchings (hypergraphs of maximum degree $ 1$), we give an $O(\log^3 n)$-round algorithm with $O(n \log^5 n)$ queries. We complement this upper bound by showing that there are no algorithms with poly$(n)$ queries that learn hypermatchings in $o(\log \log n)$ adaptive rounds. For hypergraphs with maximum degree $\Delta$ and edge size ratio $\rho$, we give a non-adaptive algorithm with $O((2n)^{\rho \Delta+1}\log^2 n)$ queries. To the best of our knowledge, these are the first algorithms with poly$(n, m)$ query complexity for learning non-trivial families of hypergraphs that have a super-constant number of edges of super-constant size.

We consider the following oblivious sketching problem: given $\epsilon \in (0,1/3)$ and $n \geq d/\epsilon^2$, design a distribution $\mathcal{D}$ over $\mathbb{R}^{k \times nd}$ and a function $f: \mathbb{R}^k \times \mathbb{R}^{nd} \rightarrow \mathbb{R}$, so that for any $n \times d$ matrix $A$, $$\Pr_{S \sim \mathcal{D}} [(1-\epsilon) \|A\|_{op} \leq f(S(A),S) \leq (1+\epsilon)\|A\|_{op}] \geq 2/3,$$ where $\|A\|_{op}$ is the operator norm of $A$ and $S(A)$ denotes $S \cdot A$, interpreting $A$ as a vector in $\mathbb{R}^{nd}$. We show a tight lower bound of $k = \Omega(d^2/\epsilon^2)$ for this problem. Our result considerably strengthens the result of Nelson and Nguyen (ICALP, 2014), as it (1) applies only to estimating the operator norm, which can be estimated given any OSE, and (2) applies to distributions over general linear operators $S$ which treat $A$ as a vector and compute $S(A)$, rather than the restricted class of linear operators corresponding to matrix multiplication. Our technique also implies the first tight bounds for approximating the Schatten $p$-norm for even integers $p$ via general linear sketches, improving the previous lower bound from $k = \Omega(n^{2-6/p})$ [Regev, 2014] to $k = \Omega(n^{2-4/p})$. Importantly, for sketching the operator norm up to a factor of $\alpha$, where $\alpha - 1 = \Omega(1)$, we obtain a tight $k = \Omega(n^2/\alpha^4)$ bound, matching the upper bound of Andoni and Nguyen (SODA, 2013), and improving the previous $k = \Omega(n^2/\alpha^6)$ lower bound. Finally, we also obtain the first lower bounds for approximating Ky Fan norms.

We propose a framework to study the effect of local recovery requirements of codeword symbols on the dimension of linear codes, based on a combinatorial proxy that we call \emph{visible rank}. The locality constraints of a linear code are stipulated by a matrix $H$ of $\star$'s and $0$'s (which we call a "stencil"), whose rows correspond to the local parity checks (with the $\star$'s indicating the support of the check). The visible rank of $H$ is the largest $r$ for which there is a $r \times r$ submatrix in $H$ with a unique generalized diagonal of $\star$'s. The visible rank yields a field-independent combinatorial lower bound on the rank of $H$ and thus the co-dimension of the code. We prove a rank-nullity type theorem relating visible rank to the rank of an associated construct called \emph{symmetric spanoid}, which was introduced by Dvir, Gopi, Gu, and Wigderson~\cite{DGGW20}. Using this connection and a construction of appropriate stencils, we answer a question posed in \cite{DGGW20} and demonstrate that symmetric spanoid rank cannot improve the currently best known $\widetilde{O}(n^{(q-2)/(q-1)})$ upper bound on the dimension of $q$-query locally correctable codes (LCCs) of length $n$. We also study the $t$-Disjoint Repair Group Property ($t$-DRGP) of codes where each codeword symbol must belong to $t$ disjoint check equations. It is known that linear $2$-DRGP codes must have co-dimension $\Omega(\sqrt{n})$. We show that there are stencils corresponding to $2$-DRGP with visible rank as small as $O(\log n)$. However, we show the second tensor of any $2$-DRGP stencil has visible rank $\Omega(n)$, thus recovering the $\Omega(\sqrt{n})$ lower bound for $2$-DRGP. For $q$-LCC, however, the $k$'th tensor power for $k\le n^{o(1)}$ is unable to improve the $\widetilde{O}(n^{(q-2)/(q-1)})$ upper bound on the dimension of $q$-LCCs by a polynomial factor.

We consider a graph-structured change point problem in which we observe a random vector with piecewise constant but unknown mean and whose independent, sub-Gaussian coordinates correspond to the $n$ nodes of a fixed graph. We are interested in the localisation task of recovering the partition of the nodes associated to the constancy regions of the mean vector. When the partition $\mathcal{S}$ consists of only two elements, we characterise the difficulty of the localisation problem in terms of four key parameters: the maximal noise variance $\sigma^2$, the size $\Delta$ of the smaller element of the partition, the magnitude $\kappa$ of the difference in the signal values across contiguous elements of the partition and the sum of the effective resistance edge weights $|\partial_r(\mathcal{S})|$ of the corresponding cut -- a graph theoretic quantity quantifying the size of the partition boundary. In particular, we demonstrate an information theoretical lower bound implying that, in the low signal-to-noise ratio regime $\kappa^2 \Delta \sigma^{-2} |\partial_r(\mathcal{S})|^{-1} \lesssim 1$, no consistent estimator of the true partition exists. On the other hand, when $\kappa^2 \Delta \sigma^{-2} |\partial_r(\mathcal{S})|^{-1} \gtrsim \zeta_n \log\{r(|E|)\}$, with $r(|E|)$ being the sum of effective resistance weighted edges and $\zeta_n$ being any diverging sequence in $n$, we show that a polynomial-time, approximate $\ell_0$-penalised least squared estimator delivers a localisation error -- measured by the symmetric difference between the true and estimated partition -- of order $ \kappa^{-2} \sigma^2 |\partial_r(\mathcal{S})| \log\{r(|E|)\}$. Aside from the $\log\{r(|E|)\}$ term, this rate is minimax optimal. Finally, we provide discussions on the localisation error for more general partitions of unknown sizes.

A homomorphism from a graph $G$ to a graph $H$ is an edge-preserving mapping from $V(G)$ to $V(H)$. Let $H$ be a fixed graph with possible loops. In the list homomorphism problem, denoted by \textsc{LHom}($H$), the instance is a graph $G$, whose every vertex is equipped with a subset of $V(H)$, called list. We ask whether there exists a homomorphism from $G$ to $H$, such that every vertex from $G$ is mapped to a vertex from its list. We study the complexity of the \textsc{LHom}($H$) problem in intersection graphs of various geometric objects. In particular, we are interested in answering the question for what graphs $H$ and for what types of geometric objects, the \textsc{LHom}($H$) problem can be solved in time subexponential in the number of vertices of the instance. We fully resolve this question for string graphs, i.e., intersection graphs of continuous curves in the plane. Quite surprisingly, it turns out that the dichotomy exactly coincides with the analogous dichotomy for graphs excluding a fixed path as an induced subgraph [Okrasa, Rz\k{a}\.zewski, STACS 2021]. Then we turn our attention to subclasses of string graphs, defined as intersections of fat objects. We observe that the (non)existence of subexponential-time algorithms in such classes is closely related to the size $\mathrm{mrc}(H)$ of a maximum reflexive clique in $H$, i.e., maximum number of pairwise adjacent vertices, each of which has a loop. We study the maximum value of $\mathrm{mrc}(H)$ that guarantees the existence of a subexponential-time algorithm for \textsc{LHom}($H$) in intersection graphs of (i) convex fat objects, (ii) fat similarly-sized objects, and (iii) disks. In the first two cases we obtain optimal results, by giving matching algorithms and lower bounds. Finally, we discuss possible extensions of our results to weighted generalizations of \textsc{LHom}($H$).

Network embedding aims to learn a latent, low-dimensional vector representations of network nodes, effective in supporting various network analytic tasks. While prior arts on network embedding focus primarily on preserving network topology structure to learn node representations, recently proposed attributed network embedding algorithms attempt to integrate rich node content information with network topological structure for enhancing the quality of network embedding. In reality, networks often have sparse content, incomplete node attributes, as well as the discrepancy between node attribute feature space and network structure space, which severely deteriorates the performance of existing methods. In this paper, we propose a unified framework for attributed network embedding-attri2vec-that learns node embeddings by discovering a latent node attribute subspace via a network structure guided transformation performed on the original attribute space. The resultant latent subspace can respect network structure in a more consistent way towards learning high-quality node representations. We formulate an optimization problem which is solved by an efficient stochastic gradient descent algorithm, with linear time complexity to the number of nodes. We investigate a series of linear and non-linear transformations performed on node attributes and empirically validate their effectiveness on various types of networks. Another advantage of attri2vec is its ability to solve out-of-sample problems, where embeddings of new coming nodes can be inferred from their node attributes through the learned mapping function. Experiments on various types of networks confirm that attri2vec is superior to state-of-the-art baselines for node classification, node clustering, as well as out-of-sample link prediction tasks. The source code of this paper is available at //github.com/daokunzhang/attri2vec.

Learning similarity functions between image pairs with deep neural networks yields highly correlated activations of embeddings. In this work, we show how to improve the robustness of such embeddings by exploiting the independence within ensembles. To this end, we divide the last embedding layer of a deep network into an embedding ensemble and formulate training this ensemble as an online gradient boosting problem. Each learner receives a reweighted training sample from the previous learners. Further, we propose two loss functions which increase the diversity in our ensemble. These loss functions can be applied either for weight initialization or during training. Together, our contributions leverage large embedding sizes more effectively by significantly reducing correlation of the embedding and consequently increase retrieval accuracy of the embedding. Our method works with any differentiable loss function and does not introduce any additional parameters during test time. We evaluate our metric learning method on image retrieval tasks and show that it improves over state-of-the-art methods on the CUB 200-2011, Cars-196, Stanford Online Products, In-Shop Clothes Retrieval and VehicleID datasets.

北京阿比特科技有限公司