亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

For a connected graph $G = (V, E)$ and $s, t \in V$, a non-separating $s$-$t$ path is a path $P$ between $s$ and $t$ such that the set of vertices of $P$ does not separate $G$, that is, $G - V(P)$ is connected. An $s$-$t$ path is non-disconnecting if $G - E(P)$ is connected. The problems of finding shortest non-separating and non-disconnecting paths are both known to be NP-hard. In this paper, we consider the problems from the viewpoint of parameterized complexity. We show that the problem of finding a non-separating $s$-$t$ path of length at most $k$ is W[1]-hard parameterized by $k$, while the non-disconnecting counterpart is fixed-parameter tractable parameterized by $k$. We also consider the shortest non-separating path problem on several classes of graphs and show that this problem is NP-hard even on bipartite graphs, split graphs, and planar graphs. As for positive results, the shortest non-separating path problem is fixed-parameter tractable parameterized by $k$ on planar graphs and polynomial-time solvable on chordal graphs if $k$ is the shortest path distance between $s$ and $t$.

相關內容

The basic goal of survivable network design is to build cheap networks that guarantee the connectivity of certain pairs of nodes despite the failure of a few edges or nodes. A celebrated result by Jain [Combinatorica'01] provides a 2-approximation for a wide class of these problems. However nothing better is known even for very basic special cases, raising the natural question whether any improved approximation factor is possible at all. In this paper we address one of the most basic problems in this family for which 2 is still the best-known approximation factor, the Forest Augmentation Problem (FAP): given an undirected unweighted graph (that w.l.o.g. is a forest) and a collection of extra edges (links), compute a minimum cardinality subset of links whose addition to the graph makes it 2-edge-connected. Several better-than-2 approximation algorithms are known for the special case where the input graph is a tree, a.k.a. the Tree Augmentation Problem (TAP). Recently this was achieved also for the weighted version of TAP, and for the k-edge-connectivity generalization of TAP. These results heavily exploit the fact that the input graph is connected, a condition that does not hold in FAP. In this paper we breach the 2-approximation barrier for FAP. Our result is based on two main ingredients. First, we describe a reduction to the Path Augmentation Problem (PAP), the special case of FAP where the input graph is a collection of disjoint paths. Our reduction is not approximation preserving, however it is sufficiently accurate to improve on a factor 2 approximation. Second, we present a better-than-2 approximation algorithm for PAP, an open problem on its own. Here we exploit a novel notion of implicit credits which might turn out to be helpful in future related work.

We consider the all pairs all shortest paths (APASP) problem, which maintains all of the multiple shortest paths for every vertex pair in a directed graph $G=(V,E)$ with a positive real weight on each edge. We present two fully dynamic algorithms for this problem in which an update supports either weight increases or weight decreases on a subset of edges incident to a vertex. Our first algorithm runs in amortized $O({\nu^*}^2 \cdot \log^3 n)$ time per update, where $n = |V|$, and $\nu^*$ bounds the number of edges that lie on shortest paths through any single vertex. Our APASP algorithm leads to the same amortized bound for the fully dynamic computation of betweenness centrality (BC), which is a parameter widely used in the analysis of large complex networks. Our method is a generalization and a variant of the fully dynamic algorithm of Demetrescu and Italiano [DI04] for unique shortest path, and it builds on our recent decremental APASP [NPR14]. Our second (faster) algorithm reduces the amortized cost per operation by a logarithmic factor, and uses new data structures and techniques that are extensions of methods in a fully dynamic algorithm by Thorup.

We describe a polynomial-time algorithm which, given a graph $G$ with treewidth $t$, approximates the pathwidth of $G$ to within a ratio of $O(t\sqrt{\log t})$. This is the first algorithm to achieve an $f(t)$-approximation for some function $f$. Our approach builds on the following key insight: every graph with large pathwidth has large treewidth or contains a subdivision of a large complete binary tree. Specifically, we show that every graph with pathwidth at least $th+2$ has treewidth at least $t$ or contains a subdivision of a complete binary tree of height $h+1$. The bound $th+2$ is best possible up to a multiplicative constant. This result was motivated by, and implies (with $c=2$), the following conjecture of Kawarabayashi and Rossman (SODA'18): there exists a universal constant $c$ such that every graph with pathwidth $\Omega(k^c)$ has treewidth at least $k$ or contains a subdivision of a complete binary tree of height $k$. Our main technical algorithm takes a graph $G$ and some (not necessarily optimal) tree decomposition of $G$ of width $t'$ in the input, and it computes in polynomial time an integer $h$, a certificate that $G$ has pathwidth at least $h$, and a path decomposition of $G$ of width at most $(t'+1)h+1$. The certificate is closely related to (and implies) the existence of a subdivision of a complete binary tree of height $h$. The approximation algorithm for pathwidth is then obtained by combining this algorithm with the approximation algorithm of Feige, Hajiaghayi, and Lee (STOC'05) for treewidth.

In this paper, we propose a depth-first search (DFS) algorithm for searching maximum matchings in general graphs. Unlike blossom shrinking algorithms, which store all possible alternative alternating paths in the super-vertices shrunk from blossoms, the newly proposed algorithm does not involve blossom shrinking. The basic idea is to deflect the alternating path when facing blossoms. The algorithm maintains detour information in an auxiliary stack to minimize the redundant data structures. A benefit of our technique is to avoid spending time on shrinking and expanding blossoms. This DFS algorithm can determine a maximum matching of a general graph with $m$ edges and $n$ vertices in $O(mn)$ time with space complexity $O(n)$.

Many existing algorithms for streaming geometric data analysis have been plagued by exponential dependencies in the space complexity, which are undesirable for processing high-dimensional data sets. In particular, once $d\geq\log n$, there are no known non-trivial streaming algorithms for problems such as maintaining convex hulls and L\"owner-John ellipsoids of $n$ points, despite a long line of work in streaming computational geometry since [AHV04]. We simultaneously improve these results to $\mathrm{poly}(d,\log n)$ bits of space by trading off with a $\mathrm{poly}(d,\log n)$ factor distortion. We achieve these results in a unified manner, by designing the first streaming algorithm for maintaining a coreset for $\ell_\infty$ subspace embeddings with $\mathrm{poly}(d,\log n)$ space and $\mathrm{poly}(d,\log n)$ distortion. Our algorithm also gives similar guarantees in the \emph{online coreset} model. Along the way, we sharpen results for online numerical linear algebra by replacing a log condition number dependence with a $\log n$ dependence, answering a question of [BDM+20]. Our techniques provide a novel connection between leverage scores, a fundamental object in numerical linear algebra, and computational geometry. For $\ell_p$ subspace embeddings, we give nearly optimal trade-offs between space and distortion for one-pass streaming algorithms. For instance, we give a deterministic coreset using $O(d^2\log n)$ space and $O((d\log n)^{1/2-1/p})$ distortion for $p>2$, whereas previous deterministic algorithms incurred a $\mathrm{poly}(n)$ factor in the space or the distortion [CDW18]. Our techniques have implications in the offline setting, where we give optimal trade-offs between the space complexity and distortion of subspace sketch data structures. To do this, we give an elementary proof of a "change of density" theorem of [LT80] and make it algorithmic.

Computing a dense subgraph is a fundamental problem in graph mining, with a diverse set of applications ranging from electronic commerce to community detection in social networks. In many of these applications, the underlying context is better modelled as a weighted hypergraph that keeps evolving with time. This motivates the problem of maintaining the densest subhypergraph of a weighted hypergraph in a {\em dynamic setting}, where the input keeps changing via a sequence of updates (hyperedge insertions/deletions). Previously, the only known algorithm for this problem was due to Hu et al. [HWC17]. This algorithm worked only on unweighted hypergraphs, and had an approximation ratio of $(1+\epsilon)r^2$ and an update time of $O(\text{poly} (r, \log n))$, where $r$ denotes the maximum rank of the input across all the updates. We obtain a new algorithm for this problem, which works even when the input hypergraph is weighted. Our algorithm has a significantly improved (near-optimal) approximation ratio of $(1+\epsilon)$ that is independent of $r$, and a similar update time of $O(\text{poly} (r, \log n))$. It is the first $(1+\epsilon)$-approximation algorithm even for the special case of weighted simple graphs. To complement our theoretical analysis, we perform experiments with our dynamic algorithm on large-scale, real-world data-sets. Our algorithm significantly outperforms the state of the art [HWC17] both in terms of accuracy and efficiency.

Stability certification and identification of the stabilizable operating region of a dynamical system are two important concerns to ensure its operational safety/security and robustness. With the advent of machine-learning tools, these issues are especially important for systems with machine-learned components in the feedback loop. Here, in presence of unknown discrete variation (DV) of its parameters within a bounded range, a system controlled by a static feedback controller in which the closed-loop (CL) equilibria are subject to variation-induced drift is equivalently represented using a class of time-invariant systems, each with the same control policy. To develop a general theory for stability and stabilizability of such a class of neural-network (NN) controlled nonlinear systems, a Lyapunov-based convex stability certificate is proposed and is further used to devise an estimate of a local Lipschitz upper bound for the NN and a corresponding operating domain in the state space containing an initialization set, starting from where the CL local asymptotic stability of each system in the class is guaranteed, while the trajectory of the original system remains confined to the domain if the DV of the parameters satisfies a certain quasi-stationarity condition. To compute such a robustly stabilizing NN controller, a stability-guaranteed training (SGT) algorithm is also proposed. The effectiveness of the proposed framework is demonstrated using illustrative examples.

Coflow is a network abstraction used to represent communication patterns in data centers. The coflow scheduling problem in large data centers is one of the most important $NP$-hard problems. Many previous studies on coflow scheduling mainly focus on the single-core model. However, with the growth of data centers, this single-core model is no longer sufficient. This paper considers the coflow scheduling problem in heterogeneous parallel networks. The heterogeneous parallel network is an architecture based on multiple network cores running in parallel. In this paper, two polynomial-time approximation algorithms are developed for scheduling divisible and indivisible coflows in heterogeneous parallel networks, respectively. Both algorithms achieve an approximation ratio of $O(\log m/ \log \log m)$ with arbitrary release times.

A palindromic substring $T[i.. j]$ of a string $T$ is said to be a shortest unique palindromic substring (SUPS) in $T$ for an interval $[p, q]$ if $T[i.. j]$ is a shortest one such that $T[i.. j]$ occurs only once in $T$, and $[i, j]$ contains $[p, q]$. The SUPS problem is, given a string $T$ of length $n$, to construct a data structure that can compute all the SUPSs for any given query interval. It is known that any SUPS query can be answered in $O(\alpha)$ time after $O(n)$-time preprocessing, where $\alpha$ is the number of SUPSs to output [Inoue et al., 2018]. In this paper, we first show that $\alpha$ is at most $4$, and the upper bound is tight. Also, we present an algorithm to solve the SUPS problem for a sliding window that can answer any query in $O(\log\log W)$ time and update data structures in amortized $O(\log\sigma)$ time, where $W$ is the size of the window, and $\sigma$ is the alphabet size. Furthermore, we consider the SUPS problem in the after-edit model and present an efficient algorithm. Namely, we present an algorithm that uses $O(n)$ time for preprocessing and answers any $k$ SUPS queries in $O(\log n\log\log n + k\log\log n)$ time after single character substitution. As a by-product, we propose a fully-dynamic data structure for range minimum queries (RmQs) with a constraint where the width of each query range is limited to polylogarithmic. The constrained RmQ data structure can answer such a query in constant time and support a single-element edit operation in amortized constant time.

We present a pipelined multiplier with reduced activities and minimized interconnect based on online digit-serial arithmetic. The working precision has been truncated such that $p<n$ bits are used to compute $n$ bits product, resulting in significant savings in area and power. The digit slices follow variable precision according to input, increasing upto $p$ and then decreases according to the error profile. Pipelining has been done to achieve high throughput and low latency which is desirable for compute intensive inner products. Synthesis results of the proposed designs have been presented and compared with the non-pipelined online multiplier, pipelined online multiplier with full working precision and conventional serial-parallel and array multipliers. For $8, 16, 24$ and $32$ bit precision, the proposed low power pipelined design show upto $38\%$ and $44\%$ reduction in power and area respectively compared to the pipelined online multiplier without working precision truncation.

北京阿比特科技有限公司