亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recently it was shown that the so-called guided local Hamiltonian problem -- estimating the smallest eigenvalue of a $k$-local Hamiltonian when provided with a description of a quantum state ('guiding state') that is guaranteed to have substantial overlap with the true groundstate -- is BQP-complete for $k \geq 6$ when the required precision is inverse polynomial in the system size $n$, and remains hard even when the overlap of the guiding state with the groundstate is close to a constant $\left(\frac12 - \Omega\left(\frac{1}{\mathop{poly}(n)}\right)\right)$. We improve upon this result in three ways: by showing that it remains BQP-complete when i) the Hamiltonian is 2-local, ii) the overlap between the guiding state and target eigenstate is as large as $1 - \Omega\left(\frac{1}{\mathop{poly}(n)}\right)$, and iii) when one is interested in estimating energies of excited states, rather than just the groundstate. Interestingly, iii) is only made possible by first showing that ii) holds.

相關內容

iOS 8 提供的應用間和應用跟系統的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source:

The purpose of this work is to present an improved energy conservation method for hyperelastodynamic contact problems based on specific normal compliance conditions. In order to determine this Improved Normal Compliance (INC) law, we use a Moreau--Yosida $\alpha$-regularization to approximate the unilateral contact law. Then, based on the work of Hauret--LeTallec \cite{hauret2006energy}, we propose in the discrete framework a specific approach allowing to respect the energy conservation of the system in adequacy with the continuous case. This strategy (INC) is characterized by a conserving behavior for frictionless impacts and admissible dissipation for friction phenomena while limiting penetration. Then, we detail the numerical treatment within the framework of the semi-smooth Newton method and primal-dual active set strategy for the normal compliance conditions with friction. We finally provide some numerical experiments to bring into light the energy conservation and the efficiency of the INC method by comparing with different classical methods from the literature throught representative contact problems.

This paper categorizes the parameterized complexity of the algorithmic problems Perfect Phylogeny and Triangulating Colored Graphs. We show that they are complete for the parameterized complexity class XALP using a reduction from Tree-chained Multicolor Independent Set and a proof of membership. We introduce the problem Triangulating Multicolored Graphs as a stepping stone and prove XALP-completeness for this problem as well. We also show that, assuming the Exponential Time Hypothesis, there exists no algorithm that solves any of these problems in time $f(k) n^{o(k)}$, where $n$ is the input size, $k$ the parameter, and $f$ any computable function.

Score-based generative modeling (SGM) is a highly successful approach for learning a probability distribution from data and generating further samples. We prove the first polynomial convergence guarantees for the core mechanic behind SGM: drawing samples from a probability density $p$ given a score estimate (an estimate of $\nabla \ln p$) that is accurate in $L^2(p)$. Compared to previous works, we do not incur error that grows exponentially in time or that suffers from a curse of dimensionality. Our guarantee works for any smooth distribution and depends polynomially on its log-Sobolev constant. Using our guarantee, we give a theoretical analysis of score-based generative modeling, which transforms white-noise input into samples from a learned data distribution given score estimates at different noise scales. Our analysis gives theoretical grounding to the observation that an annealed procedure is required in practice to generate good samples, as our proof depends essentially on using annealing to obtain a warm start at each step. Moreover, we show that a predictor-corrector algorithm gives better convergence than using either portion alone.

Immersed finite element methods have been developed as a means to circumvent the costly mesh generation required in conventional finite element analysis. However, the numerical ill-conditioning of the resultant linear system of equations in such methods poses a challenge for iterative solvers. In this work, we focus on the finite cell method (FCM) with adaptive quadrature, adaptive mesh refinement (AMR) and Nitsche's method for the weak imposition of boundary conditions. An adaptive geometric multigrid solver is employed for the discretized problem. We study the influence of the mesh-dependent stabilization parameter in Nitsche's method on the performance of the geometric multigrid solver and its implications for the multilevel setup in general. A global and a local estimate based on generalized eigenvalue problems are used to choose the stabilization parameter. We find that the convergence rate of the solver is significantly affected by the stabilization parameter, the choice of the estimate and how the stabilization parameter is handled in multilevel configurations. The local estimate, computed on each grid, is found to be a robust method and leads to rapid convergence of the geometric multigrid solver.

SARSA, a classical on-policy control algorithm for reinforcement learning, is known to chatter when combined with linear function approximation: SARSA does not diverge but oscillates in a bounded region. However, little is known about how fast SARSA converges to that region and how large the region is. In this paper, we make progress towards this open problem by showing the convergence rate of projected SARSA to a bounded region. Importantly, the region is much smaller than the region that we project into, provided that the magnitude of the reward is not too large. Existing works regarding the convergence of linear SARSA to a fixed point all require the Lipschitz constant of SARSA's policy improvement operator to be sufficiently small; our analysis instead applies to arbitrary Lipschitz constants and thus characterizes the behavior of linear SARSA for a new regime.

Backstepping is a mature and powerful Lyapunov-based design approach for a specific set of systems. Throughout the development over three decades, innovative theories and practices have extended backstepping to stabilization and tracking problems for nonlinear systems with growing complexity. The attractions of the backstepping-like approach are the recursive design processes and modularized design. A nonlinear system can be transferred into a group of simple problems and solved it by a sequential superposition of the corresponding approaches for each problem. To handle the complexities, backstepping designs always come up with adaptive control and robust control. The survey aims to review the milestone theoretical achievements among thousands of publications making the state-feedback backstepping designs of complex ODE systems to be systematic and modularized. Several selected elegant methods are reviewed, starting from the general designs, and then the finite-time control enhancing the convergence rate, the fuzzy logic system and neural network estimating the system unknowns, the Nussbaum function handling unknown control coefficients, barrier Lyapunov function solving state constraints, and the hyperbolic tangent function applying in robust designs. The associated assumptions and Lyapunov function candidates, inequalities, and the deduction key points are reviewed. The nonlinearity and complexities lay in state constraints, disturbance, input nonlinearities, time-delay effects, pure feedback systems, event-triggered systems, and stochastic systems. Instead of networked systems, the survey focuses on stand-alone systems.

In the present work, we lay out a new theory showing that all automata can always be co-lexicographically partially ordered, and an intrinsic measure of their complexity can be defined and effectively determined, namely, the minimum width $p$ of one of their admissible co-lex partial orders - dubbed here the automaton's co-lex width. We first show that this new measure captures at once the complexity of several seemingly-unrelated hard problems on automata. Any NFA of co-lex width $p$: (i) has an equivalent powerset DFA whose size is exponential in $p$ rather than (as a classic analysis shows) in the NFA's size; (ii) can be encoded using just $\Theta(\log p)$ bits per transition; (iii) admits a linear-space data structure solving regular expression matching queries in time proportional to $p^2$ per matched character. Some consequences of this new parametrization of automata are that PSPACE-hard problems such as NFA equivalence are FPT in $p$, and quadratic lower bounds for the regular expression matching problem do not hold for sufficiently small $p$. We prove that a canonical minimum-width DFA accepting a language $\mathcal L$ - dubbed the Hasse automaton $\mathcal H$ of $\mathcal L$ - can be exhibited. Finally, we explore the relationship between two conflicting objectives: minimizing the width and minimizing the number of states of a DFA. In this context, we provide an analogous of the Myhill-Nerode Theorem for co-lexicographically ordered regular languages.

We study the time complexity of the discrete $k$-center problem and related (exact) geometric set cover problems when $k$ or the size of the cover is small. We obtain a plethora of new results: - We give the first subquadratic algorithm for rectilinear discrete 3-center in 2D, running in $\widetilde{O}(n^{3/2})$ time. - We prove a lower bound of $\Omega(n^{4/3-\delta})$ for rectilinear discrete 3-center in 4D, for any constant $\delta>0$, under a standard hypothesis about triangle detection in sparse graphs. - Given $n$ points and $n$ weighted axis-aligned unit squares in 2D, we give the first subquadratic algorithm for finding a minimum-weight cover of the points by 3 unit squares, running in $\widetilde{O}(n^{8/5})$ time. We also prove a lower bound of $\Omega(n^{3/2-\delta})$ for the same problem in 2D, under the well-known APSP Hypothesis. For arbitrary axis-aligned rectangles in 2D, our upper bound is $\widetilde{O}(n^{7/4})$. - We prove a lower bound of $\Omega(n^{2-\delta})$ for Euclidean discrete 2-center in 13D, under the Hyperclique Hypothesis. This lower bound nearly matches the straightforward upper bound of $\widetilde{O}(n^\omega)$, if the matrix multiplication exponent $\omega$ is equal to 2. - We similarly prove an $\Omega(n^{k-\delta})$ lower bound for Euclidean discrete $k$-center in $O(k)$ dimensions for any constant $k\ge 3$, under the Hyperclique Hypothesis. This lower bound again nearly matches known upper bounds if $\omega=2$. - We also prove an $\Omega(n^{2-\delta})$ lower bound for the problem of finding 2 boxes to cover the largest number of points, given $n$ points and $n$ boxes in 12D. This matches the straightforward near-quadratic upper bound.

In order to make data-driven models of physical systems interpretable and reliable, it is essential to include prior physical knowledge in the modeling framework. Hamiltonian Neural Networks (HNNs) implement Hamiltonian theory in deep learning and form a comprehensive framework for modeling autonomous energy-conservative systems. Despite being suitable to estimate a wide range of physical system behavior from data, classical HNNs are restricted to systems without inputs and require noiseless state measurements and information on the derivative of the state to be available. To address these challenges, this paper introduces an Output Error Hamiltonian Neural Network (OE-HNN) modeling approach to address the modeling of physical systems with inputs and noisy state measurements. Furthermore, it does not require the state derivatives to be known. Instead, the OE-HNN utilizes an ODE-solver embedded in the training process, which enables the OE-HNN to learn the dynamics from noisy state measurements. In addition, extending HNNs based on the generalized Hamiltonian theory enables to include external inputs into the framework which are important for engineering applications. We demonstrate via simulation examples that the proposed OE-HNNs results in superior modeling performance compared to classical HNNs.

In this paper, we present a low-diameter decomposition algorithm in the LOCAL model of distributed computing that succeeds with probability $1 - 1/poly(n)$. Specifically, we show how to compute an $\left(\epsilon, O\left(\frac{\log n}{\epsilon}\right)\right)$ low-diameter decomposition in $O\left(\frac{\log^3(1/\epsilon)\log n}{\epsilon}\right)$ round Further developing our techniques, we show new distributed algorithms for approximating general packing and covering integer linear programs in the LOCAL model. For packing problems, our algorithm finds an $(1-\epsilon)$-approximate solution in $O\left(\frac{\log^3 (1/\epsilon) \log n}{\epsilon}\right)$ rounds with probability $1 - 1/poly(n)$. For covering problems, our algorithm finds an $(1+\epsilon)$-approximate solution in $O\left(\frac{\left(\log \log n + \log (1/\epsilon)\right)^3 \log n}{\epsilon}\right)$ rounds with probability $1 - 1/poly(n)$. These results improve upon the previous $O\left(\frac{\log^3 n}{\epsilon}\right)$-round algorithm by Ghaffari, Kuhn, and Maus [STOC 2017] which is based on network decompositions. Our algorithms are near-optimal for many fundamental combinatorial graph optimization problems in the LOCAL model, such as minimum vertex cover and minimum dominating set, as their $(1\pm \epsilon)$-approximate solutions require $\Omega\left(\frac{\log n}{\epsilon}\right)$ rounds to compute.

北京阿比特科技有限公司