亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The purpose of this work is to present an improved energy conservation method for hyperelastodynamic contact problems based on specific normal compliance conditions. In order to determine this Improved Normal Compliance (INC) law, we use a Moreau--Yosida $\alpha$-regularization to approximate the unilateral contact law. Then, based on the work of Hauret--LeTallec \cite{hauret2006energy}, we propose in the discrete framework a specific approach allowing to respect the energy conservation of the system in adequacy with the continuous case. This strategy (INC) is characterized by a conserving behavior for frictionless impacts and admissible dissipation for friction phenomena while limiting penetration. Then, we detail the numerical treatment within the framework of the semi-smooth Newton method and primal-dual active set strategy for the normal compliance conditions with friction. We finally provide some numerical experiments to bring into light the energy conservation and the efficiency of the INC method by comparing with different classical methods from the literature throught representative contact problems.

相關內容

In this study, we examine numerical approximations for 2nd-order linear-nonlinear differential equations with diverse boundary conditions, followed by the residual corrections of the first approximations. We first obtain numerical results using the Galerkin weighted residual approach with Bernstein polynomials. The generation of residuals is brought on by the fact that our first approximation is computed using numerical methods. To minimize these residuals, we use the compact finite difference scheme of 4th-order convergence to solve the error differential equations in accordance with the error boundary conditions. We also introduce the formulation of the compact finite difference method of fourth-order convergence for the nonlinear BVPs. The improved approximations are produced by adding the error values derived from the approximations of the error differential equation to the weighted residual values. Numerical results are compared to the exact solutions and to the solutions available in the published literature to validate the proposed scheme, and high accuracy is achieved in all cases

Reliable probabilistic primality tests are fundamental in public-key cryptography. In adversarial scenarios, a composite with a high probability of passing a specific primality test could be chosen. In such cases, we need worst-case error estimates for the test. However, in many scenarios the numbers are randomly chosen and thus have significantly smaller error probability. Therefore, we are interested in average case error estimates. In this paper, we establish such bounds for the strong Lucas primality test, as only worst-case, but no average case error bounds, are currently available. This allows us to use this test with more confidence. We examine an algorithm that draws odd $k$-bit integers uniformly and independently, runs $t$ independent iterations of the strong Lucas test with randomly chosen parameters, and outputs the first number that passes all $t$ consecutive rounds. We attain numerical upper bounds on the probability on returing a composite. Furthermore, we consider a modified version of this algorithm that excludes integers divisible by small primes, resulting in improved bounds. Additionally, we classify the numbers that contribute most to our estimate.

The combinatorial pure exploration (CPE) in the stochastic multi-armed bandit setting (MAB) is a well-studied online decision-making problem: A player wants to find the optimal \emph{action} $\boldsymbol{\pi}^*$ from \emph{action class} $\mathcal{A}$, which is a collection of subsets of arms with certain combinatorial structures. Though CPE can represent many combinatorial structures such as paths, matching, and spanning trees, most existing works focus only on binary action class $\mathcal{A}\subseteq\{0, 1\}^d$ for some positive integer $d$. This binary formulation excludes important problems such as the optimal transport, knapsack, and production planning problems. To overcome this limitation, we extend the binary formulation to real, $\mathcal{A}\subseteq\mathbb{R}^d$, and propose a new algorithm. The only assumption we make is that the number of actions in $\mathcal{A}$ is polynomial in $d$. We show an upper bound of the sample complexity for our algorithm and the action class-dependent lower bound for R-CPE-MAB, by introducing a quantity that characterizes the problem's difficulty, which is a generalization of the notion \emph{width} introduced in Chen et al.[2014].

In a Subgraph Problem we are given some graph and want to find a feasible subgraph that optimizes some measure. We consider Multistage Subgraph Problems (MSPs), where we are given a sequence of graph instances (stages) and are asked to find a sequence of subgraphs, one for each stage, such that each is optimal for its respective stage and the subgraphs for subsequent stages are as similar as possible. We present a framework that provides a $(1/\sqrt{2\chi})$-approximation algorithm for the $2$-stage restriction of an MSP if the similarity of subsequent solutions is measured as the intersection cardinality and said MSP is preficient, i.e., we can efficiently find a single-stage solution that prefers some given subset. The approximation factor is dependent on the instance's intertwinement $\chi$, a similarity measure for multistage graphs. We also show that for any MSP, independent of similarity measure and preficiency, given an exact or approximation algorithm for a constant number of stages, we can approximate the MSP for an unrestricted number of stages. Finally, we combine and apply these results and show that the above restrictions describe a very rich class of MSPs and that proving membership for this class is mostly straightforward. As examples, we explicitly state these proofs for natural multistage versions of Perfect Matching, Shortest s-t-Path, Minimum s-t-Cut and further classical problems on bipartite or planar graphs, namely Maximum Cut, Vertex Cover, Independent Set, and Biclique.

Position based dynamics is a powerful technique for simulating a variety of materials. Its primary strength is its robustness when run with limited computational budget. We develop a novel approach to address problems with PBD for quasistatic hyperelastic materials. Even though PBD is based on the projection of static constraints, PBD is best suited for dynamic simulations. This is particularly relevant since the efficient creation of large data sets of plausible, but not necessarily accurate elastic equilibria is of increasing importance with the emergence of quasistatic neural networks. Furthermore, PBD projects one constraint at a time. We show that ignoring the effects of neighboring constraints limits its convergence and stability properties. Recent works have shown that PBD can be related to the Gauss-Seidel approximation of a Lagrange multiplier formulation of backward Euler time stepping, where each constraint is solved/projected independently of the others in an iterative fashion. We show that a position-based, rather than constraint-based nonlinear Gauss-Seidel approach solves these problems. Our approach retains the essential PBD feature of stable behavior with constrained computational budgets, but also allows for convergent behavior with expanded budgets. We demonstrate the efficacy of our method on a variety of representative hyperelastic problems and show that both successive over relaxation (SOR) and Chebyshev acceleration can be easily applied.

The increasing complexity of data requires methods and models that can effectively handle intricate structures, as simplifying them would result in loss of information. While several analytical tools have been developed to work with complex data objects in their original form, these tools are typically limited to single-type variables. In this work, we propose energy trees as a regression and classification model capable of accommodating structured covariates of various types. Energy trees leverage energy statistics to extend the capabilities of conditional inference trees, from which they inherit sound statistical foundations, interpretability, scale invariance, and freedom from distributional assumptions. We specifically focus on functional and graph-structured covariates, while also highlighting the model's flexibility in integrating other variable types. Extensive simulation studies demonstrate the model's competitive performance in terms of variable selection and robustness to overfitting. Finally, we assess the model's predictive ability through two empirical analyses involving human biological data. Energy trees are implemented in the R package etree.

We propose a general framework for solving forward and inverse problems constrained by partial differential equations, where we interpolate neural networks onto finite element spaces to represent the (partial) unknowns. The framework overcomes the challenges related to the imposition of boundary conditions, the choice of collocation points in physics-informed neural networks, and the integration of variational physics-informed neural networks. A numerical experiment set confirms the framework's capability of handling various forward and inverse problems. In particular, the trained neural network generalises well for smooth problems, beating finite element solutions by some orders of magnitude. We finally propose an effective one-loop solver with an initial data fitting step (to obtain a cheap initialisation) to solve inverse problems.

In this paper, we propose and analyze the least squares finite element methods for the linear elasticity interface problem in the stress-displacement system on unfitted meshes. We consider the cases that the interface is $C^2$ or polygonal, and the exact solution $(\sigma,u)$ belongs to $H^s(div; \Omega_0 \cup \Omega_1) \times $H^{1+s}(\Omega_0 \cup \Omega_1)$ with $s > 1/2$. Two types of least squares functionals are defined to seek the numerical solution. The first is defined by simply applying the $L^2$ norm least squares principle, and requires the condition $s \geq 1$. The second is defined with a discrete minus norm, which is related to the inner product in $H^{-1/2}(\Gamma)$. The use of this discrete minus norm results in a method of optimal convergence rates and allows the exact solution has the regularity of any $s > 1/2$. The stability near the interface for both methods is guaranteed by the ghost penalty bilinear forms and we can derive the robust condition number estimates. The convergence rates under $L^2$ norm and the energy norm are derived for both methods. We illustrate the accuracy and the robustness of the proposed methods by a series of numerical experiments for test problems in two and three dimensions.

In this work we connect two notions: That of the nonparametric mode of a probability measure, defined by asymptotic small ball probabilities, and that of the Onsager-Machlup functional, a generalized density also defined via asymptotic small ball probabilities. We show that in a separable Hilbert space setting and under mild conditions on the likelihood, modes of a Bayesian posterior distribution based upon a Gaussian prior exist and agree with the minimizers of its Onsager-Machlup functional and thus also with weak posterior modes. We apply this result to inverse problems and derive conditions on the forward mapping under which this variational characterization of posterior modes holds. Our results show rigorously that in the limit case of infinite-dimensional data corrupted by additive Gaussian or Laplacian noise, nonparametric maximum a posteriori estimation is equivalent to Tikhonov-Phillips regularization. In comparison with the work of Dashti, Law, Stuart, and Voss (2013), the assumptions on the likelihood are relaxed so that they cover in particular the important case of white Gaussian process noise. We illustrate our results by applying them to a severely ill-posed linear problem with Laplacian noise, where we express the maximum a posteriori estimator analytically and study its rate of convergence in the small noise limit.

Deep reinforcement learning algorithms typically act on the same set of actions. However, this is not sufficient for a wide range of real-world applications where different subsets are available at each step. In this thesis, we consider the problem of interval restrictions as they occur in pathfinding with dynamic obstacles. When actions that lead to collisions are avoided, the continuous action space is split into variable parts. Recent research learns with strong assumptions on the number of intervals, is limited to convex subsets, and the available actions are learned from the observations. Therefore, we propose two approaches that are independent of the state of the environment by extending parameterized reinforcement learning and ConstraintNet to handle an arbitrary number of intervals. We demonstrate their performance in an obstacle avoidance task and compare the methods to penalties, projection, replacement, as well as discrete and continuous masking from the literature. The results suggest that discrete masking of action-values is the only effective method when constraints did not emerge during training. When restrictions are learned, the decision between projection, masking, and our ConstraintNet modification seems to depend on the task at hand. We compare the results with varying complexity and give directions for future work.

北京阿比特科技有限公司