We present an overview on Temporal Logic Programming under the perspective of its application for Knowledge Representation and declarative problem solving. Such programs are the result of combining usual rules with temporal modal operators, as in Linear-time Temporal Logic (LTL). We focus on recent results of the non-monotonic formalism called Temporal Equilibrium Logic (TEL) that is defined for the full syntax of LTL, but performs a model selection criterion based on Equilibrium Logic, a well known logical characterization of Answer Set Programming (ASP). We obtain a proper extension of the stable models semantics for the general case of arbitrary temporal formulas. We recall the basic definitions for TEL and its monotonic basis, the temporal logic of Here-and-There (THT), and study the differences between infinite and finite traces. We also provide other useful results, such as the translation into other formalisms like Quantified Equilibrium Logic or Second-order LTL, and some techniques for computing temporal stable models based on automata. In a second part, we focus on practical aspects, defining a syntactic fragment called temporal logic programs closer to ASP, and explain how this has been exploited in the construction of the solver TELINGO.
We prove two theorems related to the Central Limit Theorem (CLT) for Martin-L\"of Random (MLR) sequences. Martin-L\"of randomness attempts to capture what it means for a sequence of bits to be "truly random". By contrast, CLTs do not make assertions about the behavior of a single random sequence, but only on the distributional behavior of a sequence of random variables. Semantically, we usually interpret CLTs as assertions about the collective behavior of infinitely many sequences. Yet, our intuition is that if a sequence of bits is "truly random", then it should provide a "source of randomness" for which CLT-type results should hold. We tackle this difficulty by using a sampling scheme that generates an infinite number of samples from a single binary sequence. We show that when we apply this scheme to a Martin-L\"of random sequence, the empirical moments and cumulative density functions (CDF) of these samples tend to their corresponding counterparts for the normal distribution. We also prove the well known almost sure central limit theorem (ASCLT), which provides an alternative, albeit less intuitive, answer to this question. Both results are also generalized for Schnorr random sequences.
We revisit the Ravine method of Gelfand and Tsetlin from a dynamical system perspective, study its convergence properties, and highlight its similarities and differences with the Nesterov accelerated gradient method. The two methods are closely related. They can be deduced from each other by reversing the order of the extrapolation and gradient operations in their definitions. They benefit from similar fast convergence of values and convergence of iterates for general convex objective functions. We will also establish the high resolution ODE of the Ravine and Nesterov methods, and reveal an additional geometric damping term driven by the Hessian for both methods. This will allow us to prove fast convergence towards zero of the gradients not only for the Ravine method but also for the Nesterov method for the first time. We also highlight connections to other algorithms stemming from more subtle discretization schemes, and finally describe a Ravine version of the proximal-gradient algorithms for general structured smooth + non-smooth convex optimization problems.
Grover's algorithm, a well-know quantum search algorithm, allows one to find the correct item in a database, with quadratic speedup. In this paper we adapt Grover's algorithm to the problem of finding a correct answer to a natural language question in English, thus contributing to the growing field of Quantum Natural Language Processing. Using a grammar that can be interpreted as tensor contractions, each word is represented as a quantum state that serves as input to the quantum circuit. We here introduce a quantum measurement to contract the representations of words, resulting in the representation of larger text fragments. Using this framework, a representation for the question is found that contains all the possible answers in equal quantum superposition, and allows for the building of an oracle that can detect a correct answer, being agnostic to the specific question. Furthermore, we show that our construction can deal with certain types of ambiguous phrases by keeping the various different meanings in quantum superposition.
Recurrent Neural Network (RNN) is a fundamental structure in deep learning. Recently, some works study the training process of over-parameterized neural networks, and show that over-parameterized networks can learn functions in some notable concept classes with a provable generalization error bound. In this paper, we analyze the training and generalization for RNNs with random initialization, and provide the following improvements over recent works: 1) For a RNN with input sequence $x=(X_1,X_2,...,X_L)$, previous works study to learn functions that are summation of $f(\beta^T_lX_l)$ and require normalized conditions that $||X_l||\leq\epsilon$ with some very small $\epsilon$ depending on the complexity of $f$. In this paper, using detailed analysis about the neural tangent kernel matrix, we prove a generalization error bound to learn such functions without normalized conditions and show that some notable concept classes are learnable with the numbers of iterations and samples scaling almost-polynomially in the input length $L$. 2) Moreover, we prove a novel result to learn N-variables functions of input sequence with the form $f(\beta^T[X_{l_1},...,X_{l_N}])$, which do not belong to the "additive" concept class, i,e., the summation of function $f(X_l)$. And we show that when either $N$ or $l_0=\max(l_1,..,l_N)-\min(l_1,..,l_N)$ is small, $f(\beta^T[X_{l_1},...,X_{l_N}])$ will be learnable with the number iterations and samples scaling almost-polynomially in the input length $L$.
Interpretation of Deep Neural Networks (DNNs) training as an optimal control problem with nonlinear dynamical systems has received considerable attention recently, yet the algorithmic development remains relatively limited. In this work, we make an attempt along this line by reformulating the training procedure from the trajectory optimization perspective. We first show that most widely-used algorithms for training DNNs can be linked to the Differential Dynamic Programming (DDP), a celebrated second-order trajectory optimization algorithm rooted in the Approximate Dynamic Programming. In this vein, we propose a new variant of DDP that can accept batch optimization for training feedforward networks, while integrating naturally with the recent progress in curvature approximation. The resulting algorithm features layer-wise feedback policies which improve convergence rate and reduce sensitivity to hyper-parameter over existing methods. We show that the algorithm is competitive against state-ofthe-art first and second order methods. Our work opens up new avenues for principled algorithmic design built upon the optimal control theory.
While models for Visual Question Answering (VQA) have steadily improved over the years, interacting with one quickly reveals that these models lack consistency. For instance, if a model answers "red" to "What color is the balloon?", it might answer "no" if asked, "Is the balloon red?". These responses violate simple notions of entailment and raise questions about how effectively VQA models ground language. In this work, we introduce a dataset, ConVQA, and metrics that enable quantitative evaluation of consistency in VQA. For a given observable fact in an image (e.g. the balloon's color), we generate a set of logically consistent question-answer (QA) pairs (e.g. Is the balloon red?) and also collect a human-annotated set of common-sense based consistent QA pairs (e.g. Is the balloon the same color as tomato sauce?). Further, we propose a consistency-improving data augmentation module, a Consistency Teacher Module (CTM). CTM automatically generates entailed (or similar-intent) questions for a source QA pair and fine-tunes the VQA model if the VQA's answer to the entailed question is consistent with the source QA pair. We demonstrate that our CTM-based training improves the consistency of VQA models on the ConVQA datasets and is a strong baseline for further research.
We introduce GQA, a new dataset for real-world visual reasoning and compositional question answering, seeking to address key shortcomings of previous VQA datasets. We have developed a strong and robust question engine that leverages scene graph structures to create 22M diverse reasoning questions, all come with functional programs that represent their semantics. We use the programs to gain tight control over the answer distribution and present a new tunable smoothing technique to mitigate question biases. Accompanying the dataset is a suite of new metrics that evaluate essential qualities such as consistency, grounding and plausibility. An extensive analysis is performed for baselines as well as state-of-the-art models, providing fine-grained results for different question types and topologies. Whereas a blind LSTM obtains mere 42.1%, and strong VQA models achieve 54.1%, human performance tops at 89.3%, offering ample opportunity for new research to explore. We strongly hope GQA will provide an enabling resource for the next generation of models with enhanced robustness, improved consistency, and deeper semantic understanding for images and language.
We present SlowFast networks for video recognition. Our model involves (i) a Slow pathway, operating at low frame rate, to capture spatial semantics, and (ii) a Fast pathway, operating at high frame rate, to capture motion at fine temporal resolution. The Fast pathway can be made very lightweight by reducing its channel capacity, yet can learn useful temporal information for video recognition. Our models achieve strong performance for both action classification and detection in video, and large improvements are pin-pointed as contributions by our SlowFast concept. We report state-of-the-art accuracy on major video recognition benchmarks, Kinetics, Charades and AVA. Code will be made publicly available in PyTorch.
Large scale knowledge graph embedding has attracted much attention from both academia and industry in the field of Artificial Intelligence. However, most existing methods concentrate solely on fact triples contained in the given knowledge graph. Inspired by the fact that logic rules can provide a flexible and declarative language for expressing rich background knowledge, it is natural to integrate logic rules into knowledge graph embedding, to transfer human knowledge to entity and relation embedding, and strengthen the learning process. In this paper, we propose a novel logic rule-enhanced method which can be easily integrated with any translation based knowledge graph embedding model, such as TransE . We first introduce a method to automatically mine the logic rules and corresponding confidences from the triples. And then, to put both triples and mined logic rules within the same semantic space, all triples in the knowledge graph are represented as first-order logic. Finally, we define several operations on the first-order logic and minimize a global loss over both of the mined logic rules and the transformed first-order logics. We conduct extensive experiments for link prediction and triple classification on three datasets: WN18, FB166, and FB15K. Experiments show that the rule-enhanced method can significantly improve the performance of several baselines. The highlight of our model is that the filtered Hits@1, which is a pivotal evaluation in the knowledge inference task, has a significant improvement (up to 700% improvement).
We propose the inverse problem of Visual question answering (iVQA), and explore its suitability as a benchmark for visuo-linguistic understanding. The iVQA task is to generate a question that corresponds to a given image and answer pair. Since the answers are less informative than the questions, and the questions have less learnable bias, an iVQA model needs to better understand the image to be successful than a VQA model. We pose question generation as a multi-modal dynamic inference process and propose an iVQA model that can gradually adjust its focus of attention guided by both a partially generated question and the answer. For evaluation, apart from existing linguistic metrics, we propose a new ranking metric. This metric compares the ground truth question's rank among a list of distractors, which allows the drawbacks of different algorithms and sources of error to be studied. Experimental results show that our model can generate diverse, grammatically correct and content correlated questions that match the given answer.