亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider estimating a compact set from finite data by approximating the support function of that set via sublinear regression. Support functions uniquely characterize a compact set up to closure of convexification, and are sublinear (convex as well as positive homogeneous of degree one). Conversely, any sublinear function is the support function of a compact set. We leverage this property to transcribe the task of learning a compact set to that of learning its support function. We propose two algorithms to perform the sublinear regression, one via convex and another via nonconvex programming. The convex programming approach involves solving a quadratic program (QP). The nonconvex programming approach involves training a input sublinear neural network. We illustrate the proposed methods via numerical examples on learning the reach sets of controlled dynamics subject to set-valued input uncertainties from trajectory data.

相關內容

This paper offers a new approach for study the frequentist properties of the penalized MLE for general nonlinear regression models. The idea of the approach is to relax the nonlinear structural equation by introducing an auxiliary parameter for the regression response and replacing the structural equation with a penalty. This leads to a general semiparametric problem which is studied using the SLS approach from \cite{Sp2022}. We state sharp bounds on concentration and on the accuracy of the penalized MLE, Fisher and Wilks expansions, evaluate the risk of estimation over smoothness classes, and a number of further results. All the bounds are given in terms of effective dimension and do not involve the ambient dimension of the parameter space.

Nonlinear model predictive control (NMPC) solves a multivariate optimization problem to estimate the system's optimal control inputs in each control cycle. Such optimization is made more difficult by several factors, such as nonlinearities inherited in the system, highly coupled inputs, and various constraints related to the system's physical limitations. These factors make the optimization to be non-convex and hard to solve traditionally. Genetic algorithm (GA) is typically used extensively to tackle such optimization in several application domains because it does not involve differential calculation or gradient evaluation in its solution estimation. However, the size of the search space in which the GA searches for the optimal control inputs is crucial for the applicability of the GA with systems that require fast response. This paper proposes an approach to accelerate the genetic optimization of NMPC by learning optimal search space size. The proposed approach trains a multivariate regression model to adaptively predict the best smallest search space in every control cycle. The estimated best smallest size of search space is fed to the GA to allow for searching the optimal control inputs within this search space. The proposed approach not only reduces the GA's computational time but also improves the chance of obtaining the optimal control inputs in each cycle. The proposed approach was evaluated on two nonlinear systems and compared with two other genetic-based NMPC approaches implemented on the GPU of a Nvidia Jetson TX2 embedded platform in a processor-in-the-loop (PIL) fashion. The results show that the proposed approach provides a 39-53\% reduction in computational time. Additionally, it increases the convergence percentage to the optimal control inputs within the cycle's time by 48-56\%, resulting in a significant performance enhancement. The source code is available on GitHub.

A Low-rank Spectral Optimization Problem (LSOP) minimizes a linear objective subject to multiple two-sided linear matrix inequalities intersected with a low-rank and spectral constrained domain set. Although solving LSOP is, in general, NP-hard, its partial convexification (i.e., replacing the domain set by its convex hull) termed "LSOP-R," is often tractable and yields a high-quality solution. This motivates us to study the strength of LSOP-R. Specifically, we derive rank bounds for any extreme point of the feasible set of LSOP-R and prove their tightness for the domain sets with different matrix spaces. The proposed rank bounds recover two well-known results in the literature from a fresh angle and also allow us to derive sufficient conditions under which the relaxation LSOP-R is equivalent to the original LSOP. To effectively solve LSOP-R, we develop a column generation algorithm with a vector-based convex pricing oracle, coupled with a rank-reduction algorithm, which ensures the output solution satisfies the theoretical rank bound. Finally, we numerically verify the strength of the LSOP-R and the efficacy of the proposed algorithms.

Communication compression is an essential strategy for alleviating communication overhead by reducing the volume of information exchanged between computing nodes in large-scale distributed stochastic optimization. Although numerous algorithms with convergence guarantees have been obtained, the optimal performance limit under communication compression remains unclear. In this paper, we investigate the performance limit of distributed stochastic optimization algorithms employing communication compression. We focus on two main types of compressors, unbiased and contractive, and address the best-possible convergence rates one can obtain with these compressors. We establish the lower bounds for the convergence rates of distributed stochastic optimization in six different settings, combining strongly-convex, generally-convex, or non-convex functions with unbiased or contractive compressor types. To bridge the gap between lower bounds and existing algorithms' rates, we propose NEOLITHIC, a nearly optimal algorithm with compression that achieves the established lower bounds up to logarithmic factors under mild conditions. Extensive experimental results support our theoretical findings. This work provides insights into the theoretical limitations of existing compressors and motivates further research into fundamentally new compressor properties.

We propose an online learning algorithm for a class of machine learning models under a separable stochastic approximation framework. The essence of our idea lies in the observation that certain parameters in the models are easier to optimize than others. In this paper, we focus on models where some parameters have a linear nature, which is common in machine learning. In one routine of the proposed algorithm, the linear parameters are updated by the recursive least squares (RLS) algorithm, which is equivalent to a stochastic Newton method; then, based on the updated linear parameters, the nonlinear parameters are updated by the stochastic gradient method (SGD). The proposed algorithm can be understood as a stochastic approximation version of block coordinate gradient descent approach in which one part of the parameters is updated by a second-order SGD method while the other part is updated by a first-order SGD. Global convergence of the proposed online algorithm for non-convex cases is established in terms of the expected violation of a first-order optimality condition. Numerical experiments have shown that the proposed method accelerates convergence significantly and produces more robust training and test performance when compared to other popular learning algorithms. Moreover, our algorithm is less sensitive to the learning rate and outperforms the recently proposed slimTrain algorithm. The code has been uploaded to GitHub for validation.

Inverse problems are in many cases solved with optimization techniques. When the underlying model is linear, first-order gradient methods are usually sufficient. With nonlinear models, due to nonconvexity, one must often resort to second-order methods that are computationally more expensive. In this work we aim to approximate a nonlinear model with a linear one and correct the resulting approximation error. We develop a sequential method that iteratively solves a linear inverse problem and updates the approximation error by evaluating it at the new solution. This treatment convexifies the problem and allows us to benefit from established convex optimization methods. We separately consider cases where the approximation is fixed over iterations and where the approximation is adaptive. In the fixed case we show theoretically under what assumptions the sequence converges. In the adaptive case, particularly considering the special case of approximation by first-order Taylor expansion, we show that with certain assumptions the sequence converges to a critical point of the original nonconvex functional. Furthermore, we show that with quadratic objective functions the sequence corresponds to the Gauss-Newton method. Finally, we showcase numerical results superior to the conventional model correction method. We also show, that a fixed approximation can provide competitive results with considerable computational speed-up.

Under-approximations of reachable sets and tubes have been receiving growing research attention due to their important roles in control synthesis and verification. Available under-approximation methods applicable to continuous-time linear systems typically assume the ability to compute transition matrices and their integrals exactly, which is not feasible in general, and/or suffer from high computational costs. In this note, we attempt to overcome these drawbacks for a class of linear time-invariant (LTI) systems, where we propose a novel method to under-approximate finite-time forward reachable sets and tubes, utilizing approximations of the matrix exponential and its integral. In particular, we consider the class of continuous-time LTI systems with an identity input matrix and initial and input values belonging to full dimensional sets that are affine transformations of closed unit balls. The proposed method yields computationally efficient under-approximations of reachable sets and tubes, when implemented using zonotopes, with first-order convergence guarantees in the sense of the Hausdorff distance. To illustrate its performance, we implement our approach in three numerical examples, where linear systems of dimensions ranging between 2 and 200 are considered.

Learning the optimal ordering of content is an important challenge in website design. The learning to rank (LTR) framework models this problem as a sequential problem of selecting lists of content and observing where users decide to click. Most previous work on LTR assumes that the user considers each item in the list in isolation, and makes binary choices to click or not on each. We introduce a multinomial logit (MNL) choice model to the LTR framework, which captures the behaviour of users who consider the ordered list of items as a whole and make a single choice among all the items and a no-click option. Under the MNL model, the user favours items which are either inherently more attractive, or placed in a preferable position within the list. We propose upper confidence bound (UCB) algorithms to minimise regret in two settings - where the position dependent parameters are known, and unknown. We present theoretical analysis leading to an $\Omega(\sqrt{JT})$ lower bound for the problem, an $\tilde{O}(\sqrt{JT})$ upper bound on regret of the UCB algorithm in the known-parameter setting, and an $\tilde{O}(K^2\sqrt{JT})$ upper bound on regret, the first, in the more challenging unknown-position-parameter setting. Our analyses are based on tight new concentration results for Geometric random variables, and novel functional inequalities for maximum likelihood estimators computed on discrete data.

High-dimensional linear regression under heavy-tailed noise or outlier corruption is challenging, both computationally and statistically. Convex approaches have been proven statistically optimal but suffer from high computational costs, especially since the robust loss functions are usually non-smooth. More recently, computationally fast non-convex approaches via sub-gradient descent are proposed, which, unfortunately, fail to deliver a statistically consistent estimator even under sub-Gaussian noise. In this paper, we introduce a projected sub-gradient descent algorithm for both the sparse linear regression and low-rank linear regression problems. The algorithm is not only computationally efficient with linear convergence but also statistically optimal, be the noise Gaussian or heavy-tailed with a finite 1 + epsilon moment. The convergence theory is established for a general framework and its specific applications to absolute loss, Huber loss and quantile loss are investigated. Compared with existing non-convex methods, ours reveals a surprising phenomenon of two-phase convergence. In phase one, the algorithm behaves as in typical non-smooth optimization that requires gradually decaying stepsizes. However, phase one only delivers a statistically sub-optimal estimator, which is already observed in the existing literature. Interestingly, during phase two, the algorithm converges linearly as if minimizing a smooth and strongly convex objective function, and thus a constant stepsize suffices. Underlying the phase-two convergence is the smoothing effect of random noise to the non-smooth robust losses in an area close but not too close to the truth. Numerical simulations confirm our theoretical discovery and showcase the superiority of our algorithm over prior methods.

We study best arm identification in a variant of the multi-armed bandit problem where the learner has limited precision in arm selection. The learner can only sample arms via certain exploration bundles, which we refer to as boxes. In particular, at each sampling epoch, the learner selects a box, which in turn causes an arm to get pulled as per a box-specific probability distribution. The pulled arm and its instantaneous reward are revealed to the learner, whose goal is to find the best arm by minimising the expected stopping time, subject to an upper bound on the error probability. We present an asymptotic lower bound on the expected stopping time, which holds as the error probability vanishes. We show that the optimal allocation suggested by the lower bound is, in general, non-unique and therefore challenging to track. We propose a modified tracking-based algorithm to handle non-unique optimal allocations, and demonstrate that it is asymptotically optimal. We also present non-asymptotic lower and upper bounds on the stopping time in the simpler setting when the arms accessible from one box do not overlap with those of others.

北京阿比特科技有限公司