亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

One of the most difficult parts of motion planning in configuration space is ensuring a trajectory does not collide with task-space obstacles in the environment. Generating regions that are convex and collision free in configuration space can separate the computational burden of collision checking from motion planning. To that end, we propose an extension to IRIS (Iterative Regional Inflation by Semidefinite programming) [5] that allows it to operate in configuration space. Our algorithm, IRIS-NP (Iterative Regional Inflation by Semidefinite & Nonlinear Programming), uses nonlinear optimization to add the separating hyperplanes, enabling support for more general nonlinear constraints. Developed in parallel to Amice et al. [1], IRIS-NP trades rigorous certification that regions are collision free for probabilistic certification and the benefit of faster region generation in the configuration-space coordinates. IRIS-NP also provides a solid initialization to C-IRIS to reduce the number of iterations required for certification. We demonstrate that IRIS-NP can scale to a dual-arm manipulator and can handle additional nonlinear constraints using the same machinery. Finally, we show ablations of elements of our implementation to demonstrate their importance.

相關內容

Iris數據集是常用的分類實驗數據集,由Fisher, 1936收集整理。Iris也稱鳶尾花卉數據集,是一類多重變量分析的數據集。數據集包含150個數據集,分為3類,每類50個數據,每個數據包含4個屬性。可通過花萼長度,花萼寬度,花瓣長度,花瓣寬度4個屬性預測鳶尾花卉屬于(Setosa,Versicolour,Virginica)三個種類中的哪一類。

This paper presents a new method for reconstructing regions of interest (ROI) from a limited number of computed tomography (CT) measurements. Classical model-based iterative reconstruction methods lead to images with predictable features. Still, they often suffer from tedious parameterization and slow convergence. On the contrary, deep learning methods are fast, and they can reach high reconstruction quality by leveraging information from large datasets, but they lack interpretability. At the crossroads of both methods, deep unfolding networks have been recently proposed. Their design includes the physics of the imaging system and the steps of an iterative optimization algorithm. Motivated by the success of these networks for various applications, we introduce an unfolding neural network called U-RDBFB designed for ROI CT reconstruction from limited data. Few-view truncated data are effectively handled thanks to a robust non-convex data fidelity term combined with a sparsity-inducing regularization function. We unfold the Dual Block coordinate Forward-Backward (DBFB) algorithm, embedded in an iterative reweighted scheme, allowing the learning of key parameters in a supervised manner. Our experiments show an improvement over several state-of-the-art methods, including a model-based iterative scheme, a multi-scale deep learning architecture, and other deep unfolding methods.

Predictive Maintenance (PdM) methods aim to facilitate the scheduling of maintenance work before equipment failure. In this context, detecting early faults in automated teller machines (ATMs) has become increasingly important since these machines are susceptible to various types of unpredictable failures. ATMs track execution status by generating massive event-log data that collect system messages unrelated to the failure event. Predicting machine failure based on event logs poses additional challenges, mainly in extracting features that might represent sequences of events indicating impending failures. Accordingly, feature learning approaches are currently being used in PdM, where informative features are learned automatically from minimally processed sensor data. However, a gap remains to be seen on how these approaches can be exploited for deriving relevant features from event-log-based data. To fill this gap, we present a predictive model based on a convolutional kernel (MiniROCKET and HYDRA) to extract features from the original event-log data and a linear classifier to classify the sample based on the learned features. The proposed methodology is applied to a significant real-world collected dataset. Experimental results demonstrated how one of the proposed convolutional kernels (i.e. HYDRA) exhibited the best classification performance (accuracy of 0.759 and AUC of 0.693). In addition, statistical analysis revealed that the HYDRA and MiniROCKET models significantly overcome one of the established state-of-the-art approaches in time series classification (InceptionTime), and three non-temporal ML methods from the literature. The predictive model was integrated into a container-based decision support system to support operators in the timely maintenance of ATMs.

We present a practical guide for the analysis of regression discontinuity (RD) designs in biomedical contexts. We begin by introducing key concepts, assumptions, and estimands within both the continuity-based framework and the local randomization framework. We then discuss modern estimation and inference methods within both frameworks, including approaches for bandwidth or local neighborhood selection, optimal treatment effect point estimation, and robust bias-corrected inference methods for uncertainty quantification. We also overview empirical falsification tests that can be used to support key assumptions. Our discussion focuses on two particular features that are relevant in biomedical research: (i) fuzzy RD designs, which often arise when therapeutic treatments are based on clinical guidelines but patients with scores near the cutoff are treated contrary to the assignment rule; and (ii) RD designs with discrete scores, which are ubiquitous in biomedical applications. We illustrate our discussion with three empirical applications: the effect of CD4 guidelines for anti-retroviral therapy on retention of HIV patients in South Africa, the effect of genetic guidelines for chemotherapy on breast cancer recurrence in the United States, and the effects of age-based patient cost-sharing on healthcare utilization in Taiwan. We provide replication materials employing publicly available statistical software in Python, R and Stata, offering researchers all necessary tools to conduct an RD analysis.

We propose a new iteration scheme, the Cauchy-Simplex, to optimize convex problems over the probability simplex $\{w\in\mathbb{R}^n\ |\ \sum_i w_i=1\ \textrm{and}\ w_i\geq0\}$. Other works have taken steps to enforce positivity or unit normalization automatically but never simultaneously within a unified setting. This paper presents a natural framework for manifestly requiring the probability condition. Specifically, we map the simplex to the positive quadrant of a unit sphere, envisage gradient descent in latent variables, and map the result back in a way that only depends on the simplex variable. Moreover, proving rigorous convergence results in this formulation leads inherently to tools from information theory (e.g. cross entropy and KL divergence). Each iteration of the Cauchy-Simplex consists of simple operations, making it well-suited for high-dimensional problems. We prove that it has a convergence rate of ${O}(1/T)$ for convex functions, and numerical experiments of projection onto convex hulls show faster convergence than similar algorithms. Finally, we apply our algorithm to online learning problems and prove the convergence of the average regret for (1) Prediction with expert advice and (2) Universal Portfolios.

Controlling marine vehicles in challenging environments is a complex task due to the presence of nonlinear hydrodynamics and uncertain external disturbances. Despite nonlinear model predictive control (MPC) showing potential in addressing these issues, its practical implementation is often constrained by computational limitations. In this paper, we propose an efficient controller for trajectory tracking of marine vehicles by employing a convex error-state MPC on the Lie group. By leveraging the inherent geometric properties of the Lie group, we can construct globally valid error dynamics and formulate a quadratic programming-based optimization problem. Our proposed MPC demonstrates effectiveness in trajectory tracking through extensive-numerical simulations, including scenarios involving ocean currents. Notably, our method substantially reduces computation time compared to nonlinear MPC, making it well-suited for real-time control applications with long prediction horizons or involving small marine vehicles.

Real-time synthesis of legged locomotion maneuvers in challenging industrial settings is still an open problem, requiring simultaneous determination of footsteps locations several steps ahead while generating whole-body motions close to the robot's limits. State estimation and perception errors impose the practical constraint of fast re-planning motions in a model predictive control (MPC) framework. We first observe that the computational limitation of perceptive locomotion pipelines lies in the combinatorics of contact surface selection. Re-planning contact locations on selected surfaces can be accomplished at MPC frequencies (50-100 Hz). Then, whole-body motion generation typically follows a reference trajectory for the robot base to facilitate convergence. We propose removing this constraint to robustly address unforeseen events such as contact slipping, by leveraging a state-of-the-art whole-body MPC (Croccodyl). Our contributions are integrated into a complete framework for perceptive locomotion, validated under diverse terrain conditions, and demonstrated in challenging trials that push the robot's actuation limits, as well as in the ICRA 2023 quadruped challenge simulation.

Lossy compressors are increasingly adopted in scientific research, tackling volumes of data from experiments or parallel numerical simulations and facilitating data storage and movement. In contrast with the notion of entropy in lossless compression, no theoretical or data-based quantification of lossy compressibility exists for scientific data. Users rely on trial and error to assess lossy compression performance. As a strong data-driven effort toward quantifying lossy compressibility of scientific datasets, we provide a statistical framework to predict compression ratios of lossy compressors. Our method is a two-step framework where (i) compressor-agnostic predictors are computed and (ii) statistical prediction models relying on these predictors are trained on observed compression ratios. Proposed predictors exploit spatial correlations and notions of entropy and lossyness via the quantized entropy. We study 8+ compressors on 6 scientific datasets and achieve a median percentage prediction error less than 12%, which is substantially smaller than that of other methods while achieving at least a 8.8x speedup for searching for a specific compression ratio and 7.8x speedup for determining the best compressor out of a collection.

The weighted $3$-Set Packing problem is defined as follows: As input, we are given a collection $\mathcal{S}$ of sets, each of cardinality at most $3$ and equipped with a positive weight. The task is to find a disjoint sub-collection of maximum total weight. Already the special case of unit weights is known to be NP-hard, and the state-of-the-art are $\frac{4}{3}+\epsilon$-approximations by Cygan and F\"urer and Yu. In this paper, we study the $2$-$3$-Set Packing problem, a generalization of the unweighted $3$-Set Packing problem, where our set collection may contain sets of cardinality $3$ and weight $2$, as well as sets of cardinality $2$ and weight $1$. Building upon the state-of-the-art works in the unit weight setting, we manage to provide a $\frac{4}{3}+\epsilon$-approximation also for the more general $2$-$3$-Set Packing problem. We believe that this result can be a good starting point to identify classes of weight functions to which the techniques used for unit weights can be generalized. Using a reduction by Fernandes and Lintzmayer, our result further implies a $\frac{4}{3}+\epsilon$-approximation for the Maximum Leaf Spanning Arborescence problem (MLSA) in rooted directed acyclic graphs, improving on the previously known $\frac{7}{5}$-approximation by Fernandes and Lintzmayer. By exploiting additional structural properties of the instance constructed in their reduction, we can further get the approximation guarantee for the MLSA down to $\frac{4}{3}$. The MLSA has applications in broadcasting where a message needs to be transferred from a source node to all other nodes along the arcs of an arborescence in a given network.

Simulations play a key role for inference in collider physics. We explore various approaches for enhancing the precision of simulations using machine learning, including interventions at the end of the simulation chain (reweighting), at the beginning of the simulation chain (pre-processing), and connections between the end and beginning (latent space refinement). To clearly illustrate our approaches, we use W+jets matrix element surrogate simulations based on normalizing flows as a prototypical example. First, weights in the data space are derived using machine learning classifiers. Then, we pull back the data-space weights to the latent space to produce unweighted examples and employ the Latent Space Refinement (LASER) protocol using Hamiltonian Monte Carlo. An alternative approach is an augmented normalizing flow, which allows for different dimensions in the latent and target spaces. These methods are studied for various pre-processing strategies, including a new and general method for massive particles at hadron colliders that is a tweak on the widely-used RAMBO-on-diet mapping. We find that modified simulations can achieve sub-percent precision across a wide range of phase space.

We propose a data segmentation methodology for the high-dimensional linear regression problem where the regression parameters are allowed to undergo multiple changes. The proposed methodology, MOSEG, proceeds in two stages where the data is first scanned for multiple change points using a moving window-based procedure, which is followed by a location refinement stage. MOSEG enjoys computational efficiency thanks to the adoption of a coarse grid in the first stage, as well as achieving theoretical consistency in estimating both the total number and the locations of the change points without requiring independence or sub-Gaussianity. We also propose MOSEG$.$MS, a multiscale extension of MOSEG which, while comparable to MOSEG in terms of computational complexity, achieves theoretical consistency for a broader parameter space that permits multiscale change points. We demonstrate good performance of the proposed methods in comparative simulation studies and in an application to to predicting the equity premium.

北京阿比特科技有限公司