亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this study, we conduct a thorough and meticulous examination of the Runge phenomenon. Initially, we engage in an extensive review of relevant literature, which aids in delineating the genesis and essence of the Runge phenomenon, along with an exploration of both conventional and contemporary algorithmic solutions. Subsequently, the paper delves into a diverse array of resolution methodologies, encompassing classical numerical approaches, regularization techniques, mock-Chebyshev interpolation, the TISI (Three-Interval Interpolation Strategy), external pseudo-constraint interpolation, and interpolation strategies predicated upon Singular Value Decomposition (SVD). For each method, we not only introduce but also innovate a novel algorithm to effectively address the phenomenon. This paper executes detailed numerical computations for each method, employing visualization techniques to vividly illustrate the efficacy of various strategies in mitigating the Runge phenomenon. Our findings reveal that although traditional methods exhibit commendable performance in certain instances, novel approaches such as mock-Chebyshev interpolation and regularization-centric methods demonstrate marked superiority in specific contexts. Moreover, the paper provides a critical analysis of these methodologies, specifically highlighting the constraints and potential avenues for enhancement in SVD decomposition-based interpolation strategies. In conclusion, we propose future research trajectories and underscore the imperative of further exploration into interpolation strategies, with an emphasis on their practical application validation. This article serves not only as a comprehensive resource on the Runge phenomenon for researchers but also offers pragmatic guidance for resolving real-world interpolation challenges.

相關內容

奇異值分解(Singular Value Decomposition)是線性代數中一種重要的矩陣分解,奇異值分解則是特征分解在任意矩陣上的推廣。在信號處理、統計學等領域有重要應用。

We consider scalar semilinear elliptic PDEs, where the nonlinearity is strongly monotone, but only locally Lipschitz continuous. To linearize the arising discrete nonlinear problem, we employ a damped Zarantonello iteration, which leads to a linear Poisson-type equation that is symmetric and positive definite. The resulting system is solved by a contractive algebraic solver such as a multigrid method with local smoothing. We formulate a fully adaptive algorithm that equibalances the various error components coming from mesh refinement, iterative linearization, and algebraic solver. We prove that the proposed adaptive iteratively linearized finite element method (AILFEM) guarantees convergence with optimal complexity, where the rates are understood with respect to the overall computational cost (i.e., the computational time). Numerical experiments investigate the involved adaptivity parameters.

We analyze and validate the virtual element method combined with a boundary correction similar to the one in [1,2], to solve problems on two dimensional domains with curved boundaries approximated by polygonal domains obtained as the union of squared elements out of a uniform structured mesh, such as the one that naturally arises when the domain is issued from an image. We show, both theoretically and numerically, that resorting to the use of polygonal elements allows to satisfy, for any order, the assumptions required for the stability of the method, thus allowing to fully exploit the potential of higher order methods, the efficiency of which is ensured by a novel static condensation strategy acting on the edges of the decomposition.

Spatial regression models are central to the field of spatial statistics. Nevertheless, their estimation in case of large and irregular gridded spatial datasets presents considerable computational challenges. To tackle these computational problems, Arbia \citep{arbia_2014_pairwise} introduced a pseudo-likelihood approach (called pairwise likelihood, say PL) which required the identification of pairs of observations that are internally correlated, but mutually conditionally uncorrelated. However, while the PL estimators enjoy optimal theoretical properties, their practical implementation when dealing with data observed on irregular grids suffers from dramatic computational issues (connected with the identification of the pairs of observations) that, in most empirical cases, negatively counter-balance its advantages. In this paper we introduce an algorithm specifically designed to streamline the computation of the PL in large and irregularly gridded spatial datasets, dramatically simplifying the estimation phase. In particular, we focus on the estimation of Spatial Error models (SEM). Our proposed approach, efficiently pairs spatial couples exploiting the KD tree data structure and exploits it to derive the closed-form expressions for fast parameter approximation. To showcase the efficiency of our method, we provide an illustrative example using simulated data, demonstrating the computational advantages if compared to a full likelihood inference are not at the expenses of accuracy.

We are interested in generating surfaces with arbitrary roughness and forming patterns on the surfaces. Two methods are applied to construct rough surfaces. In the first method, some superposition of wave functions with random frequencies and angles of propagation are used to get periodic rough surfaces with analytic parametric equations. The amplitude of such surfaces is also an important variable in the provided eigenvalue analysis for the Laplace-Beltrami operator and in the generation of pattern formation. Numerical experiments show that the patterns become irregular as the amplitude and frequency of the rough surface increase. For the sake of easy generalization to closed manifolds, we propose a second construction method for rough surfaces, which uses random nodal values and discretized heat filters. We provide numerical evidence that both surface {construction methods} yield comparable patterns to those {observed} in real-life animals.

Recently, there has been a growing interest in the relationships between unrooted and rooted phylogenetic networks. In this context, a natural question to ask is if an unrooted phylogenetic network U can be oriented as a rooted phylogenetic network such that the latter satisfies certain structural properties. In a recent preprint, Bulteau et al. claim that it is computational hard to decide if U has a funneled (resp. funneled tree-child) orientation, for when the internal vertices of U have degree at most 5. Unfortunately, the proof of their funneled tree-child result appears to be incorrect. In this paper, we present a corrected proof and show that hardness remains for other popular classes of rooted phylogenetic networks such as funneled normal and funneled reticulation-visible. Additionally, our results hold regardless of whether U is rooted at an existing vertex or by subdividing an edge with the root.

Large-amplitude current-driven plasma instabilities, which can transition to the Buneman instability, were observed in one-dimensional (1D) simulations to generate high-energy backstreaming ions. We investigate the saturation of multi-dimensional plasma instabilities and its effects on energetic ion formation. Such ions directly impact spacecraft thruster lifetimes and are associated with magnetic reconnection and cosmic ray inception. An Eulerian Vlasov--Poisson solver employing the grid-based direct kinetic method is used to study the growth and saturation of 2D2V collisionless, electrostatic current-driven instabilities spanning two dimensions each in the configuration (D) and velocity (V) spaces supporting ion and electron phase-space transport. Four stages characterise the electric potential evolution in such instabilities: linear modal growth, harmonic growth, accelerated growth via quasi-linear mechanisms alongside non-linear fill-in, and saturated turbulence. Its transition and isotropisation process bears considerable similarities to the development of hydrodynamic turbulence. While a tendency to isotropy is observed in the plasma waves, followed by electron and then ion phase space after several ion-acoustic periods, the formation of energetic backstreaming ions is more limited in the 2D2V than in the 1D1V simulations. Plasma waves formed by two-dimensional electrostatic kinetic instabilities can propagate in the direction perpendicular to the net electron drift. Thus, large-amplitude multi-dimensional waves generate high-energy transverse-streaming ions and eventually limit energetic backward-streaming ions along the longitudinal direction. The multi-dimensional study sheds light on interactions between longitudinal and transverse electrostatic plasma instabilities, as well as fundamental characteristics of the inception and sustenance of unmagnetised plasma turbulence.

The goal of explainable Artificial Intelligence (XAI) is to generate human-interpretable explanations, but there are no computationally precise theories of how humans interpret AI generated explanations. The lack of theory means that validation of XAI must be done empirically, on a case-by-case basis, which prevents systematic theory-building in XAI. We propose a psychological theory of how humans draw conclusions from saliency maps, the most common form of XAI explanation, which for the first time allows for precise prediction of explainee inference conditioned on explanation. Our theory posits that absent explanation humans expect the AI to make similar decisions to themselves, and that they interpret an explanation by comparison to the explanations they themselves would give. Comparison is formalized via Shepard's universal law of generalization in a similarity space, a classic theory from cognitive science. A pre-registered user study on AI image classifications with saliency map explanations demonstrate that our theory quantitatively matches participants' predictions of the AI.

We hypothesize that due to the greedy nature of learning in multi-modal deep neural networks, these models tend to rely on just one modality while under-fitting the other modalities. Such behavior is counter-intuitive and hurts the models' generalization, as we observe empirically. To estimate the model's dependence on each modality, we compute the gain on the accuracy when the model has access to it in addition to another modality. We refer to this gain as the conditional utilization rate. In the experiments, we consistently observe an imbalance in conditional utilization rates between modalities, across multiple tasks and architectures. Since conditional utilization rate cannot be computed efficiently during training, we introduce a proxy for it based on the pace at which the model learns from each modality, which we refer to as the conditional learning speed. We propose an algorithm to balance the conditional learning speeds between modalities during training and demonstrate that it indeed addresses the issue of greedy learning. The proposed algorithm improves the model's generalization on three datasets: Colored MNIST, Princeton ModelNet40, and NVIDIA Dynamic Hand Gesture.

We derive information-theoretic generalization bounds for supervised learning algorithms based on the information contained in predictions rather than in the output of the training algorithm. These bounds improve over the existing information-theoretic bounds, are applicable to a wider range of algorithms, and solve two key challenges: (a) they give meaningful results for deterministic algorithms and (b) they are significantly easier to estimate. We show experimentally that the proposed bounds closely follow the generalization gap in practical scenarios for deep learning.

When and why can a neural network be successfully trained? This article provides an overview of optimization algorithms and theory for training neural networks. First, we discuss the issue of gradient explosion/vanishing and the more general issue of undesirable spectrum, and then discuss practical solutions including careful initialization and normalization methods. Second, we review generic optimization methods used in training neural networks, such as SGD, adaptive gradient methods and distributed methods, and theoretical results for these algorithms. Third, we review existing research on the global issues of neural network training, including results on bad local minima, mode connectivity, lottery ticket hypothesis and infinite-width analysis.

北京阿比特科技有限公司