亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The selection of model's parameters plays an important role in the application of support vector classification (SVC). The commonly used method of selecting model's parameters is the k-fold cross validation with grid search (CV). It is extremely time-consuming because it needs to train a large number of SVC models. In this paper, a new method is proposed to train SVC with the selection of model's parameters. Firstly, training SVC with the selection of model's parameters is modeled as a minimax optimization problem (MaxMin-L2-SVC-NCH), in which the minimization problem is an optimization problem of finding the closest points between two normal convex hulls (L2-SVC-NCH) while the maximization problem is an optimization problem of finding the optimal model's parameters. A lower time complexity can be expected in MaxMin-L2-SVC-NCH because CV is abandoned. A gradient-based algorithm is then proposed to solve MaxMin-L2-SVC-NCH, in which L2-SVC-NCH is solved by a projected gradient algorithm (PGA) while the maximization problem is solved by a gradient ascent algorithm with dynamic learning rate. To demonstrate the advantages of the PGA in solving L2-SVC-NCH, we carry out a comparison of the PGA and the famous sequential minimal optimization (SMO) algorithm after a SMO algorithm and some KKT conditions for L2-SVC-NCH are provided. It is revealed that the SMO algorithm is a special case of the PGA. Thus, the PGA can provide more flexibility. The comparative experiments between MaxMin-L2-SVC-NCH and the classical parameter selection models on public datasets show that MaxMin-L2-SVC-NCH greatly reduces the number of models to be trained and the test accuracy is not lost to the classical models. It indicates that MaxMin-L2-SVC-NCH performs better than the other models. We strongly recommend MaxMin-L2-SVC-NCH as a preferred model for SVC task.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · network inference · 可約的 · Networking · Learning ·
2023 年 9 月 6 日

On-device Deep Neural Network (DNN) inference consumes significant computing resources and development efforts. To alleviate that, we propose LUT-NN, the first system to empower inference by table lookup, to reduce inference cost. LUT-NN learns the typical features for each operator, named centroid, and precompute the results for these centroids to save in lookup tables. During inference, the results of the closest centroids with the inputs can be read directly from the table, as the approximated outputs without computations. LUT-NN integrates two major novel techniques: (1) differentiable centroid learning through backpropagation, which adapts three levels of approximation to minimize the accuracy impact by centroids; (2) table lookup inference execution, which comprehensively considers different levels of parallelism, memory access reduction, and dedicated hardware units for optimal performance. LUT-NN is evaluated on multiple real tasks, covering image and speech recognition, and nature language processing. Compared to related work, LUT-NN improves accuracy by 66% to 92%, achieving similar level with the original models. LUT-NN reduces the cost at all dimensions, including FLOPs ($\leq$ 16x), model size ($\leq$ 7x), latency ($\leq$ 6.8x), memory ($\leq$ 6.5x), and power ($\leq$ 41.7%).

While many recent any-to-any voice conversion models succeed in transferring some target speech's style information to the converted speech, they still lack the ability to faithfully reproduce the speaking style of the target speaker. In this work, we propose a novel method to extract rich style information from target utterances and to efficiently transfer it to source speech content without requiring text transcriptions or speaker labeling. Our proposed approach introduces an attention mechanism utilizing a self-supervised learning (SSL) model to collect the speaking styles of a target speaker each corresponding to the different phonetic content. The styles are represented with a set of embeddings called stylebook. In the next step, the stylebook is attended with the source speech's phonetic content to determine the final target style for each source content. Finally, content information extracted from the source speech and content-dependent target style embeddings are fed into a diffusion-based decoder to generate the converted speech mel-spectrogram. Experiment results show that our proposed method combined with a diffusion-based generative model can achieve better speaker similarity in any-to-any voice conversion tasks when compared to baseline models, while the increase in computational complexity with longer utterances is suppressed.

Neural Machine Translation (NMT) models have become successful, but their performance remains poor when translating on new domains with a limited number of data. In this paper, we present a novel approach Epi-Curriculum to address low-resource domain adaptation (DA), which contains a new episodic training framework along with denoised curriculum learning. Our episodic training framework enhances the model's robustness to domain shift by episodically exposing the encoder/decoder to an inexperienced decoder/encoder. The denoised curriculum learning filters the noised data and further improves the model's adaptability by gradually guiding the learning process from easy to more difficult tasks. Experiments on English-German and English-Romanian translation show that: (i) Epi-Curriculum improves both model's robustness and adaptability in seen and unseen domains; (ii) Our episodic training framework enhances the encoder and decoder's robustness to domain shift.

This paper introduces BWSNet, a model that can be trained from raw human judgements obtained through a Best-Worst scaling (BWS) experiment. It maps sound samples into an embedded space that represents the perception of a studied attribute. To this end, we propose a set of cost functions and constraints, interpreting trial-wise ordinal relations as distance comparisons in a metric learning task. We tested our proposal on data from two BWS studies investigating the perception of speech social attitudes and timbral qualities. For both datasets, our results show that the structure of the latent space is faithful to human judgements.

High dynamic range (HDR) images capture much more intensity levels than standard ones. Current methods predominantly generate HDR images from 8-bit low dynamic range (LDR) sRGB images that have been degraded by the camera processing pipeline. However, it becomes a formidable task to retrieve extremely high dynamic range scenes from such limited bit-depth data. Unlike existing methods, the core idea of this work is to incorporate more informative Raw sensor data to generate HDR images, aiming to recover scene information in hard regions (the darkest and brightest areas of an HDR scene). To this end, we propose a model tailor-made for Raw images, harnessing the unique features of Raw data to facilitate the Raw-to-HDR mapping. Specifically, we learn exposure masks to separate the hard and easy regions of a high dynamic scene. Then, we introduce two important guidances, dual intensity guidance, which guides less informative channels with more informative ones, and global spatial guidance, which extrapolates scene specifics over an extended spatial domain. To verify our Raw-to-HDR approach, we collect a large Raw/HDR paired dataset for both training and testing. Our empirical evaluations validate the superiority of the proposed Raw-to-HDR reconstruction model, as well as our newly captured dataset in the experiments.

The Potential Outcome Framework (POF) plays a prominent role in the field of causal inference. Most causal inference models based on the POF (CIMs-POF) are designed for eliminating confounding bias and default to an underlying assumption of Confounding Covariates. This assumption posits that the covariates consist solely of confounders. However, the assumption of Confounding Covariates is challenging to maintain in practice, particularly when dealing with high-dimensional covariates. While certain methods have been proposed to differentiate the distinct components of covariates prior to conducting causal inference, the consequences of treating non-confounding covariates as confounders remain unclear. This ambiguity poses a potential risk when conducting causal inference in practical scenarios. In this paper, we present a unified graphical framework for the CIMs-POF, which greatly enhances the comprehension of these models' underlying principles. Using this graphical framework, we quantitatively analyze the extent to which the inference performance of CIMs-POF is influenced when incorporating various types of non-confounding covariates, such as instrumental variables, mediators, colliders, and adjustment variables. The key findings are: in the task of eliminating confounding bias, the optimal scenario is for the covariates to exclusively encompass confounders; in the subsequent task of inferring counterfactual outcomes, the adjustment variables contribute to more accurate inferences. Furthermore, extensive experiments conducted on synthetic datasets consistently validate these theoretical conclusions.

The development of machine learning models requires a large amount of training data. Data marketplaces are essential for trading high-quality, private-domain data not publicly available online. However, due to growing data privacy concerns, direct data exchange is inappropriate. Federated Learning (FL) is a distributed machine learning paradigm that exchanges data utilities (in form of local models or gradients) among multiple parties without directly sharing the raw data. However, several challenges exist when applying existing FL architectures to construct a data marketplace: (i) In existing FL architectures, Data Acquirers (DAs) cannot privately evaluate local models from Data Providers (DPs) prior to trading; (ii) Model aggregation protocols in existing FL designs struggle to exclude malicious DPs without "overfitting" to the DA's (possibly biased) root dataset; (iii) Prior FL designs lack a proper billing mechanism to enforce the DA to fairly allocate the reward according to contributions made by different DPs. To address above challenges, we propose martFL, the first federated learning architecture that is specifically designed to enable a secure utility-driven data marketplace. At a high level, martFL is powered by two innovative designs: (i) a quality-aware model aggregation protocol that achieves robust local model aggregation even when the DA's root dataset is biased; (ii) a verifiable data transaction protocol that enables the DA to prove, both succinctly and in zero-knowledge, that it has faithfully aggregates the local models submitted by different DPs according to the committed aggregation weights, based on which the DPs can unambiguously claim the corresponding reward. We implement a prototype of martFL and evaluate it extensively over various tasks. The results show that martFL can improve the model accuracy by up to 25% while saving up to 64% data acquisition cost.

This paper presents a hidden Markov model designed to investigate the complex nature of earnings persistence. The proposed model assumes that the residuals of log-earnings consist of a persistent component and a transitory component, both following general Markov processes. Nonparametric identification is achieved through spectral decomposition of linear operators, and a modified stochastic EM algorithm is introduced for model estimation. Applying the framework to the Panel Study of Income Dynamics (PSID) dataset, we find that the earnings process displays nonlinear persistence, conditional skewness, and conditional kurtosis. Additionally, the transitory component is found to possess non-Gaussian properties, resulting in a significantly asymmetric distributional impact when high-earning households face negative shocks or low-earning households encounter positive shocks. Our empirical findings also reveal the presence of ARCH effects in earnings at horizons ranging from 2 to 8 years, further highlighting the complex dynamics of earnings persistence.

Recent advances in state-of-the-art DNN architecture design have been moving toward Transformer models. These models achieve superior accuracy across a wide range of applications. This trend has been consistent over the past several years since Transformer models were originally introduced. However, the amount of compute and bandwidth required for inference of recent Transformer models is growing at a significant rate, and this has made their deployment in latency-sensitive applications challenging. As such, there has been an increased focus on making Transformer models more efficient, with methods that range from changing the architecture design, all the way to developing dedicated domain-specific accelerators. In this work, we survey different approaches for efficient Transformer inference, including: (i) analysis and profiling of the bottlenecks in existing Transformer architectures and their similarities and differences with previous convolutional models; (ii) implications of Transformer architecture on hardware, including the impact of non-linear operations such as Layer Normalization, Softmax, and GELU, as well as linear operations, on hardware design; (iii) approaches for optimizing a fixed Transformer architecture; (iv) challenges in finding the right mapping and scheduling of operations for Transformer models; and (v) approaches for optimizing Transformer models by adapting the architecture using neural architecture search. Finally, we perform a case study by applying the surveyed optimizations on Gemmini, the open-source, full-stack DNN accelerator generator, and we show how each of these approaches can yield improvements, compared to previous benchmark results on Gemmini. Among other things, we find that a full-stack co-design approach with the aforementioned methods can result in up to 88.7x speedup with a minimal performance degradation for Transformer inference.

Deep models trained in supervised mode have achieved remarkable success on a variety of tasks. When labeled samples are limited, self-supervised learning (SSL) is emerging as a new paradigm for making use of large amounts of unlabeled samples. SSL has achieved promising performance on natural language and image learning tasks. Recently, there is a trend to extend such success to graph data using graph neural networks (GNNs). In this survey, we provide a unified review of different ways of training GNNs using SSL. Specifically, we categorize SSL methods into contrastive and predictive models. In either category, we provide a unified framework for methods as well as how these methods differ in each component under the framework. Our unified treatment of SSL methods for GNNs sheds light on the similarities and differences of various methods, setting the stage for developing new methods and algorithms. We also summarize different SSL settings and the corresponding datasets used in each setting. To facilitate methodological development and empirical comparison, we develop a standardized testbed for SSL in GNNs, including implementations of common baseline methods, datasets, and evaluation metrics.

北京阿比特科技有限公司