This article studies the infinite-width limit of deep feedforward neural networks whose weights are dependent, and modelled via a mixture of Gaussian distributions. Each hidden node of the network is assigned a nonnegative random variable that controls the variance of the outgoing weights of that node. We make minimal assumptions on these per-node random variables: they are iid and their sum, in each layer, converges to some finite random variable in the infinite-width limit. Under this model, we show that each layer of the infinite-width neural network can be characterised by two simple quantities: a non-negative scalar parameter and a L\'evy measure on the positive reals. If the scalar parameters are strictly positive and the L\'evy measures are trivial at all hidden layers, then one recovers the classical Gaussian process (GP) limit, obtained with iid Gaussian weights. More interestingly, if the L\'evy measure of at least one layer is non-trivial, we obtain a mixture of Gaussian processes (MoGP) in the large-width limit. The behaviour of the neural network in this regime is very different from the GP regime. One obtains correlated outputs, with non-Gaussian distributions, possibly with heavy tails. Additionally, we show that, in this regime, the weights are compressible, and some nodes have asymptotically non-negligible contributions, therefore representing important hidden features. Many sparsity-promoting neural network models can be recast as special cases of our approach, and we discuss their infinite-width limits; we also present an asymptotic analysis of the pruning error. We illustrate some of the benefits of the MoGP regime over the GP regime in terms of representation learning and compressibility on simulated, MNIST and Fashion MNIST datasets.
Flow-based generative models enjoy certain advantages in computing the data generation and the likelihood, and have recently shown competitive empirical performance. Compared to the accumulating theoretical studies on related score-based diffusion models, analysis of flow-based models, which are deterministic in both forward (data-to-noise) and reverse (noise-to-data) directions, remain sparse. In this paper, we provide a theoretical guarantee of generating data distribution by a progressive flow model, the so-called JKO flow model, which implements the Jordan-Kinderleherer-Otto (JKO) scheme in a normalizing flow network. Leveraging the exponential convergence of the proximal gradient descent (GD) in Wasserstein space, we prove the Kullback-Leibler (KL) guarantee of data generation by a JKO flow model to be $O(\varepsilon^2)$ when using $N \lesssim \log (1/\varepsilon)$ many JKO steps ($N$ Residual Blocks in the flow) where $\varepsilon $ is the error in the per-step first-order condition. The assumption on data density is merely a finite second moment, and the theory extends to data distributions without density and when there are inversion errors in the reverse process where we obtain KL-$W_2$ mixed error guarantees. The non-asymptotic convergence rate of the JKO-type $W_2$-proximal GD is proved for a general class of convex objective functionals that includes the KL divergence as a special case, which can be of independent interest.
A Physics-Informed Neural Network (PINN) provides a distinct advantage by synergizing neural networks' capabilities with the problem's governing physical laws. In this study, we introduce an innovative approach for solving seepage problems by utilizing the PINN, harnessing the capabilities of Deep Neural Networks (DNNs) to approximate hydraulic head distributions in seepage analysis. To effectively train the PINN model, we introduce a comprehensive loss function comprising three components: one for evaluating differential operators, another for assessing boundary conditions, and a third for appraising initial conditions. The validation of the PINN involves solving four benchmark seepage problems. The results unequivocally demonstrate the exceptional accuracy of the PINN in solving seepage problems, surpassing the accuracy of FEM in addressing both steady-state and free-surface seepage problems. Hence, the presented approach highlights the robustness of the PINN and underscores its precision in effectively addressing a spectrum of seepage challenges. This amalgamation enables the derivation of accurate solutions, overcoming limitations inherent in conventional methods such as mesh generation and adaptability to complex geometries.
The success of over-parameterized neural networks trained to near-zero training error has caused great interest in the phenomenon of benign overfitting, where estimators are statistically consistent even though they interpolate noisy training data. While benign overfitting in fixed dimension has been established for some learning methods, current literature suggests that for regression with typical kernel methods and wide neural networks, benign overfitting requires a high-dimensional setting where the dimension grows with the sample size. In this paper, we show that the smoothness of the estimators, and not the dimension, is the key: benign overfitting is possible if and only if the estimator's derivatives are large enough. We generalize existing inconsistency results to non-interpolating models and more kernels to show that benign overfitting with moderate derivatives is impossible in fixed dimension. Conversely, we show that rate-optimal benign overfitting is possible for regression with a sequence of spiky-smooth kernels with large derivatives. Using neural tangent kernels, we translate our results to wide neural networks. We prove that while infinite-width networks do not overfit benignly with the ReLU activation, this can be fixed by adding small high-frequency fluctuations to the activation function. Our experiments verify that such neural networks, while overfitting, can indeed generalize well even on low-dimensional data sets.
It is known that the generating function associated with the enumeration of non-backtracking walks on finite graphs is a rational matrix-valued function of the parameter; such function is also closely related to graph-theoretical results such as Ihara's theorem and the zeta function on graphs. In [P. Grindrod, D. J. Higham, V. Noferini, The deformed graph Laplacian and its application to network centrality analysis, SIAM J. Matrix Anal. Appl. 39(1), 310--341, 2018], the radius of convergence of the generating function was studied for simple (i.e., undirected, unweighted and with no loops) graphs, and shown to depend on the number of cycles in the graph. In this paper, we use technologies from the theory of polynomial and rational matrices to greatly extend these results by studying the radius of convergence of the corresponding generating function for general, possibly directed and/or weighted, graphs. We give an analogous characterization of the radius of convergence for directed unweighted graphs, showing that it depends on the number of cycles in the undirectization of the graph. For weighted graphs, we provide for the first time an exact formula for the radius of convergence, improving a previous result that exhibited a lower bound. Finally, we consider also backtracking-downweighted walks on unweighted digraphs, and we prove a version of Ihara's theorem in that case.
Within the domain of e-commerce retail, an important objective is the reduction of parcel loss during the last-mile delivery phase. The ever-increasing availability of data, including product, customer, and order information, has made it possible for the application of machine learning in parcel loss prediction. However, a significant challenge arises from the inherent imbalance in the data, i.e., only a very low percentage of parcels are lost. In this paper, we propose two machine learning approaches, namely, Data Balance with Supervised Learning (DBSL) and Deep Hybrid Ensemble Learning (DHEL), to accurately predict parcel loss. The practical implication of such predictions is their value in aiding e-commerce retailers in optimizing insurance-related decision-making policies. We conduct a comprehensive evaluation of the proposed machine learning models using one year data from Belgian shipments. The findings show that the DHEL model, which combines a feed-forward autoencoder with a random forest, achieves the highest classification performance. Furthermore, we use the techniques from Explainable AI (XAI) to illustrate how prediction models can be used in enhancing business processes and augmenting the overall value proposition for e-commerce retailers in the last mile delivery.
We systematically analyze optimization dynamics in deep neural networks (DNNs) trained with stochastic gradient descent (SGD) and study the effect of learning rate $\eta$, depth $d$, and width $w$ of the neural network. By analyzing the maximum eigenvalue $\lambda^H_t$ of the Hessian of the loss, which is a measure of sharpness of the loss landscape, we find that the dynamics can show four distinct regimes: (i) an early time transient regime, (ii) an intermediate saturation regime, (iii) a progressive sharpening regime, and (iv) a late time ``edge of stability" regime. The early and intermediate regimes (i) and (ii) exhibit a rich phase diagram depending on $\eta \equiv c / \lambda_0^H $, $d$, and $w$. We identify several critical values of $c$, which separate qualitatively distinct phenomena in the early time dynamics of training loss and sharpness. Notably, we discover the opening up of a ``sharpness reduction" phase, where sharpness decreases at early times, as $d$ and $1/w$ are increased.
We study the multiplicative hazards model with intermittently observed longitudinal covariates and time-varying coefficients. For such models, the existing {\it ad hoc} approach, such as the last value carried forward, is biased. We propose a kernel weighting approach to get an unbiased estimation of the non-parametric coefficient function and establish asymptotic normality for any fixed time point. Furthermore, we construct the simultaneous confidence band to examine the overall magnitude of the variation. Simulation studies support our theoretical predictions and show favorable performance of the proposed method. A data set from cerebral infarction is used to illustrate our methodology.
Resolution in deep convolutional neural networks (CNNs) is typically bounded by the receptive field size through filter sizes, and subsampling layers or strided convolutions on feature maps. The optimal resolution may vary significantly depending on the dataset. Modern CNNs hard-code their resolution hyper-parameters in the network architecture which makes tuning such hyper-parameters cumbersome. We propose to do away with hard-coded resolution hyper-parameters and aim to learn the appropriate resolution from data. We use scale-space theory to obtain a self-similar parametrization of filters and make use of the N-Jet: a truncated Taylor series to approximate a filter by a learned combination of Gaussian derivative filters. The parameter sigma of the Gaussian basis controls both the amount of detail the filter encodes and the spatial extent of the filter. Since sigma is a continuous parameter, we can optimize it with respect to the loss. The proposed N-Jet layer achieves comparable performance when used in state-of-the art architectures, while learning the correct resolution in each layer automatically. We evaluate our N-Jet layer on both classification and segmentation, and we show that learning sigma is especially beneficial for inputs at multiple sizes.
Neural networks (NNs) are primarily developed within the frequentist statistical framework. Nevertheless, frequentist NNs lack the capability to provide uncertainties in the predictions, and hence their robustness can not be adequately assessed. Conversely, the Bayesian neural networks (BNNs) naturally offer predictive uncertainty by applying Bayes' theorem. However, their computational requirements pose significant challenges. Moreover, both frequentist NNs and BNNs suffer from overfitting issues when dealing with noisy and sparse data, which render their predictions unwieldy away from the available data space. To address both these problems simultaneously, we leverage insights from a hierarchical setting in which the parameter priors are conditional on hyperparameters to construct a BNN by applying a semi-analytical framework known as nonlinear sparse Bayesian learning (NSBL). We call our network sparse Bayesian neural network (SBNN) which aims to address the practical and computational issues associated with BNNs. Simultaneously, imposing a sparsity-inducing prior encourages the automatic pruning of redundant parameters based on the automatic relevance determination (ARD) concept. This process involves removing redundant parameters by optimally selecting the precision of the parameters prior probability density functions (pdfs), resulting in a tractable treatment for overfitting. To demonstrate the benefits of the SBNN algorithm, the study presents an illustrative regression problem and compares the results of a BNN using standard Bayesian inference, hierarchical Bayesian inference, and a BNN equipped with the proposed algorithm. Subsequently, we demonstrate the importance of considering the full parameter posterior by comparing the results with those obtained using the Laplace approximation with and without NSBL.
We introduce a Bayesian conditional autoregressive model for analyzing patient-specific and neighborhood risks of stillbirth and preterm birth within a city. Our fully Bayesian approach automatically learns the amount of spatial heterogeneity and spatial dependence between neighborhoods. Our model provides meaningful inferences and uncertainty quantification for both covariate effects and neighborhood risk probabilities through their posterior distributions. We apply our methodology to data from the city of Philadelphia. Using electronic health records (45,919 deliveries at hospitals within the University of Pennsylvania Health System) and United States Census Bureau data from 363 census tracts in Philadelphia, we find that both patient-level characteristics (e.g. self-identified race/ethnicity) and neighborhood-level characteristics (e.g. violent crime) are highly associated with patients' odds of stillbirth or preterm birth. Our neighborhood risk analysis further reveals that census tracts in West Philadelphia and North Philadelphia are at highest risk of these outcomes. Specifically, neighborhoods with higher rates of women in poverty or on public assistance have greater neighborhood risk for these outcomes, while neighborhoods with higher rates of college-educated women or women in the labor force have lower risk. Our findings could be useful for targeted individual and neighborhood interventions.