This paper explores the benefits of incorporating natural ventilation (NV) simulation into a generative process of designing residential buildings to improve energy efficiency and indoor thermal comfort. Our proposed workflow uses the Wave Function Collapse algorithm to generate a diverse set of plausible floor plans. It also includes post-COVID occupant presence models while incorporating adaptive comfort models. We conduct four sets of experiments using the workflow, and the simulated results suggest that multi-mode cooling strategies combining conventional air conditioning with NV can often significantly reduce energy use while introducing only slight reductions in thermal comfort.
This paper introduces RG (Relational Genetic) model, a revised relational model to represent graph-structured data in RDBMS while preserving its topology, for efficiently and effectively extracting data in different formats from disparate sources. Along with: (a) SQL$_\delta$, an SQL dialect augmented with graph pattern queries and tuple-vertex joins, such that one can extract graph properties via graph pattern matching, and "semantically" match entities across relations and graphs; (b) a logical representation of graphs in RDBMS, which introduces an exploration operator for efficient pattern querying, supports also browsing and updating graph-structured data; and (c) a strategy to uniformly evaluate SQL, pattern and hybrid queries that join tuples and vertices, all inside an RDBMS by leveraging its optimizer without performance degradation on switching different execution engines. A lightweight system, WhiteDB, is developed as an implementation to evaluate the benefits it can actually bring on real-life data. We empirically verified that the RG model enables the graph pattern queries to be answered as efficiently as in native graph engines; can consider the access on graph and relation in any order for optimal plan; and supports effective data enrichment.
This paper studies the statistical characterization of ground-to-air (G2A) and reconfigurable intelligent surface (RIS)-assisted air-to-ground (A2G) communications with unmanned aerial vehicles (UAVs) in terrestrial and non-terrestrial networks under the impact of channel aging. We first model the G2A and A2G signal-to-noise ratios (SNRs) as non-central complex Gaussian quadratic random variables (RVs) and derive their exact probability density functions, offering a unique characterization for the A2G SNR as the product of two scaled non-central chi-square RVs. Moreover, we also find that, for a large number of RIS elements, the RIS-assisted A2G channel can be characterized as a single Rician fading channel. Our results reveal the presence of channel hardening in A2G communication under low UAV speeds, where we derive the maximum target spectral efficiency (SE) for a system to maintain a consistent required outage level. Meanwhile, high UAV speeds, exceeding 50 m/s, lead to a significant performance degradation, which cannot be mitigated by increasing the number of RIS elements.
This paper examines the quantization methods used in large-scale data analysis models and their hyperparameter choices. The recent surge in data analysis scale has significantly increased computational resource requirements. To address this, quantizing model weights has become a prevalent practice in data analysis applications such as deep learning. Quantization is particularly vital for deploying large models on devices with limited computational resources. However, the selection of quantization hyperparameters, like the number of bits and value range for weight quantization, remains an underexplored area. In this study, we employ the typical case analysis from statistical physics, specifically the replica method, to explore the impact of hyperparameters on the quantization of simple learning models. Our analysis yields three key findings: (i) an unstable hyperparameter phase, known as replica symmetry breaking, occurs with a small number of bits and a large quantization width; (ii) there is an optimal quantization width that minimizes error; and (iii) quantization delays the onset of overparameterization, helping to mitigate overfitting as indicated by the double descent phenomenon. We also discover that non-uniform quantization can enhance stability. Additionally, we develop an approximate message-passing algorithm to validate our theoretical results.
In material sciences, characterizing faults in periodic structures is vital for understanding material properties. To characterize magnetic labyrinthine patterns, it is necessary to accurately identify junctions and terminals, often featuring over a thousand closely packed defects per image. This study introduces a new technique called TM-CNN (Template Matching - Convolutional Neural Network) designed to detect a multitude of small objects in images, such as defects in magnetic labyrinthine patterns. TM-CNN was used to identify these structures in 444 experimental images, and the results were explored to deepen the understanding of magnetic materials. It employs a two-stage detection approach combining template matching, used in initial detection, with a convolutional neural network, used to eliminate incorrect identifications. To train a CNN classifier, it is necessary to create a large number of training images. This difficulty prevents the use of CNN in many practical applications. TM-CNN significantly reduces the manual workload for creating training images by automatically making most of the annotations and leaving only a small number of corrections to human reviewers. In testing, TM-CNN achieved an impressive F1 score of 0.988, far outperforming traditional template matching and CNN-based object detection algorithms.
In this paper, we propose localized versions of Weisfeiler-Leman (WL) algorithms in an effort to both increase the expressivity, as well as decrease the computational overhead. We focus on the specific problem of subgraph counting and give localized versions of $k-$WL for any $k$. We analyze the power of Local $k-$WL and prove that it is more expressive than $k-$WL and at most as expressive as $(k+1)-$WL. We give a characterization of patterns whose count as a subgraph and induced subgraph are invariant if two graphs are Local $k-$WL equivalent. We also introduce two variants of $k-$WL: Layer $k-$WL and recursive $k-$WL. These methods are more time and space efficient than applying $k-$WL on the whole graph. We also propose a fragmentation technique that guarantees the exact count of all induced subgraphs of size at most 4 using just $1-$WL. The same idea can be extended further for larger patterns using $k>1$. We also compare the expressive power of Local $k-$WL with other GNN hierarchies and show that given a bound on the time-complexity, our methods are more expressive than the ones mentioned in Papp and Wattenhofer[2022a].
The transition to 4th generation district heating creates a growing need for scalable, automated design tools that accurately capture the spatial and temporal details of heating network operation. This paper presents an automated design approach for the optimal design of district heating networks that combines scalable density-based topology optimization with a multi-period approach. In this way, temporal variations in demand, supply, and heat losses can be taken into account while optimizing the network design based on a nonlinear physics model. The transition of the automated design approach from worst-case to multi-period shows a design progression from separate branched networks to a single integrated meshed network topology connecting all producers. These integrated topologies emerge without imposing such structures a priori. They increase network connectivity, and allow for more flexible shifting of heat loads between different producers and heat consumers, resulting in more cost-effective use of heat. In a case study, this integrated design resulted in an increase in waste heat share of 42.8 % and a subsequent reduction in project cost of 17.9 %. We show how producer unavailability can be accounted for in the automated design at the cost of a 3.1 % increase in the cost of backup capacity. The resulting optimized network designs of this approach connect multiple low temperature heat sources in a single integrated network achieving high waste heat utilization and redundancy, highlighting the applicability of the approach to next-generation district heating networks.
This study investigates the influence of varying illumination levels on architectural experiences by employing a comprehensive approach that combines self-reported assessments and neurophysiological measurements. Thirty participants were exposed to nine distinct illumination conditions in a controlled virtual reality environment. Subjective assessments, collected through questionnaires in which participants were asked to rate how pleasant, interesting, exciting, calming, complex, bright and spacious they found the space. Objective measurements of brain activity were collected by electroencephalogram (EEG). Data analysis demonstrated that illumination levels significantly influenced cognitive engagement and different architectural experience indicators. This alignment between subjective assessment and EEG data underscores the relationship between illuminance and architectural experiences. The study bridges the gap between quantitative and qualitative assessments, providing a deeper understanding of the intricate connection between lighting conditions and human responses. These findings contribute to the enhancement of environmental design based on neuroscientific insights, emphasizing the critical role of well-considered daylighting design in positively influencing occupants' cognitive and emotional states within built environments.
Speaker Verification (SV) systems involve mainly two individual stages: feature extraction and classification. In this paper, we explore these two modules with the aim of improving the performance of a speaker verification system under noisy conditions. On the one hand, the choice of the most appropriate acoustic features is a crucial factor for performing robust speaker verification. The acoustic parameters used in the proposed system are: Mel Frequency Cepstral Coefficients (MFCC), their first and second derivatives (Deltas and Delta- Deltas), Bark Frequency Cepstral Coefficients (BFCC), Perceptual Linear Predictive (PLP), and Relative Spectral Transform - Perceptual Linear Predictive (RASTA-PLP). In this paper, a complete comparison of different combinations of the previous features is discussed. On the other hand, the major weakness of a conventional Support Vector Machine (SVM) classifier is the use of generic traditional kernel functions to compute the distances among data points. However, the kernel function of an SVM has great influence on its performance. In this work, we propose the combination of two SVM-based classifiers with different kernel functions: Linear kernel and Gaussian Radial Basis Function (RBF) kernel with a Logistic Regression (LR) classifier. The combination is carried out by means of a parallel structure approach, in which different voting rules to take the final decision are considered. Results show that significant improvement in the performance of the SV system is achieved by using the combined features with the combined classifiers either with clean speech or in the presence of noise. Finally, to enhance the system more in noisy environments, the inclusion of the multiband noise removal technique as a preprocessing stage is proposed.
We propose a novel coding scheme for DNA-based storage systems, called the shift-interleave (SI) coding, designed to correct insertion, deletion, and substitution (IDS) errors, as well as sequence losses. The SI coding scheme employs multiple codewords from two binary low-density parity-check codes. These codewords are processed to form DNA base sequences through shifting, bit-to-base mapping, and interleaving. At the receiver side, an efficient non-iterative detection and decoding scheme is employed to sequentially estimate codewords. The numerical results demonstrate the excellent performance of the SI coding scheme in correcting both IDS errors and sequence losses.
In order to answer natural language questions over knowledge graphs, most processing pipelines involve entity and relation linking. Traditionally, entity linking and relation linking has been performed either as dependent sequential tasks or independent parallel tasks. In this paper, we propose a framework called "EARL", which performs entity linking and relation linking as a joint single task. EARL uses a graph connection based solution to the problem. We model the linking task as an instance of the Generalised Travelling Salesman Problem (GTSP) and use GTSP approximate algorithm solutions. We later develop EARL which uses a pair-wise graph-distance based solution to the problem.The system determines the best semantic connection between all keywords of the question by referring to a knowledge graph. This is achieved by exploiting the "connection density" between entity candidates and relation candidates. The "connection density" based solution performs at par with the approximate GTSP solution.We have empirically evaluated the framework on a dataset with 5000 questions. Our system surpasses state-of-the-art scores for entity linking task by reporting an accuracy of 0.65 to 0.40 from the next best entity linker.