Individual-based epidemiological models support the study of fine-grained preventive measures, such as tailored vaccine allocation policies, in silico. As individual-based models are computationally intensive, it is pivotal to identify optimal strategies within a reasonable computational budget. Moreover, due to the high societal impact associated with the implementation of preventive strategies, uncertainty regarding decisions should be communicated to policy makers, which is naturally embedded in a Bayesian approach. We present a novel technique for evaluating vaccine allocation strategies using a multi-armed bandit framework in combination with a Bayesian anytime $m$-top exploration algorithm. $m$-top exploration allows the algorithm to learn $m$ policies for which it expects the highest utility, enabling experts to inspect this small set of alternative strategies, along with their quantified uncertainty. The anytime component provides policy advisors with flexibility regarding the computation time and the desired confidence, which is important as it is difficult to make this trade-off beforehand. We consider the Belgian COVID-19 epidemic using the individual-based model STRIDE, where we learn a set of vaccination policies that minimize the number of infections and hospitalisations. Through experiments we show that our method can efficiently identify the $m$-top policies, which is validated in a scenario where the ground truth is available. Finally, we explore how vaccination policies can best be organised under different contact reduction schemes. Through these experiments, we show that the top policies follow a clear trend regarding the prioritised age groups and assigned vaccine type, which provides insights for future vaccination campaigns.
Structured knowledge bases (KBs) are a foundation of many intelligent applications, yet are notoriously incomplete. Language models (LMs) have recently been proposed for unsupervised knowledge base completion (KBC), yet, despite encouraging initial results, questions regarding their suitability remain open. Existing evaluations often fall short because they only evaluate on popular subjects, or sample already existing facts from KBs. In this work, we introduce a novel, more challenging benchmark dataset, and a methodology tailored for a realistic assessment of the KBC potential of LMs. For automated assessment, we curate a dataset called WD-KNOWN, which provides an unbiased random sample of Wikidata, containing over 3.9 million facts. In a second step, we perform a human evaluation on predictions that are not yet in the KB, as only this provides real insights into the added value over existing KBs. Our key finding is that biases in dataset conception of previous benchmarks lead to a systematic overestimate of LM performance for KBC. However, our results also reveal strong areas of LMs. We could, for example, perform a significant completion of Wikidata on the relations nativeLanguage, by a factor of ~21 (from 260k to 5.8M) at 82% precision, usedLanguage, by a factor of ~2.1 (from 2.1M to 6.6M) at 82% precision, and citizenOf by a factor of ~0.3 (from 4.2M to 5.3M) at 90% precision. Moreover, we find that LMs possess surprisingly strong generalization capabilities: even on relations where most facts were not directly observed in LM training, prediction quality can be high.
Inverse Reinforcement Learning (IRL) is a powerful paradigm for inferring a reward function from expert demonstrations. Many IRL algorithms require a known transition model and sometimes even a known expert policy, or they at least require access to a generative model. However, these assumptions are too strong for many real-world applications, where the environment can be accessed only through sequential interaction. We propose a novel IRL algorithm: Active exploration for Inverse Reinforcement Learning (AceIRL), which actively explores an unknown environment and expert policy to quickly learn the expert's reward function and identify a good policy. AceIRL uses previous observations to construct confidence intervals that capture plausible reward functions and find exploration policies that focus on the most informative regions of the environment. AceIRL is the first approach to active IRL with sample-complexity bounds that does not require a generative model of the environment. AceIRL matches the sample complexity of active IRL with a generative model in the worst case. Additionally, we establish a problem-dependent bound that relates the sample complexity of AceIRL to the suboptimality gap of a given IRL problem. We empirically evaluate AceIRL in simulations and find that it significantly outperforms more naive exploration strategies.
Fine-tuning large pre-trained language models on downstream tasks has become an important paradigm in NLP. However, common practice fine-tunes all of the parameters in a pre-trained model, which becomes prohibitive when a large number of downstream tasks are present. Therefore, many fine-tuning methods are proposed to learn incremental updates of pre-trained weights in a parameter efficient way, e.g., low-rank increments. These methods often evenly distribute the budget of incremental updates across all pre-trained weight matrices, and overlook the varying importance of different weight parameters. As a consequence, the fine-tuning performance is suboptimal. To bridge this gap, we propose AdaLoRA, which adaptively allocates the parameter budget among weight matrices according to their importance score. In particular, AdaLoRA parameterizes the incremental updates in the form of singular value decomposition. Such a novel approach allows us to effectively prune the singular values of unimportant updates, which is essentially to reduce their parameter budget but circumvent intensive exact SVD computations. We conduct extensive experiments with several pre-trained models on natural language processing, question answering, and natural language generation to validate the effectiveness of AdaLoRA. Results demonstrate that AdaLoRA manifests notable improvement over baselines, especially in the low budget settings. Our code is publicly available at //github.com/QingruZhang/AdaLoRA .
At the same time that artificial intelligence (AI) and machine learning are becoming central to human life, their potential harms become more vivid. In the presence of such drawbacks, a critical question to address before using individual predictions for critical decision-making is whether those are reliable. Aligned with recent efforts on data-centric AI, this paper proposes a novel approach, complementary to the existing work on trustworthy AI, to address the reliability question through the lens of data. Specifically, it associates data sets with distrust quantification that specifies their scope of use for individual predictions. It develops novel algorithms for efficient and effective computation of distrust values. The proposed algorithms learn the necessary components of the measures from the data itself and are sublinear, which makes them scalable to very large and multi-dimensional settings. Furthermore, an estimator is designed to enable no-data access during the query time. Besides theoretical analyses, the algorithms are evaluated experimentally, using multiple real and synthetic data sets and different tasks. The experiment results reflect a consistent correlation between distrust values and model performance. This highlights the necessity of dismissing prediction outcomes for cases with high distrust values, at least for critical decisions.
We introduce continuous $R$-valuations on directed-complete posets (dcpos, for short), as a generalization of continuous valuations in domain theory, by extending values of continuous valuations from reals to so-called Abelian d-rags $R$. Like the valuation monad $\mathbf{V}$ introduced by Jones and Plotkin, we show that the construction of continuous $R$-valuations extends to a strong monad $\mathbf{V}^R$ on the category of dcpos and Scott-continuous maps. Additionally, and as in recent work by the two authors and C. Th\'eron, and by the second author, B. Lindenhovius, M. Mislove and V. Zamdzhiev, we show that we can extract a commutative monad $\mathbf{V}^R_m$ out of it, whose elements we call minimal $R$-valuations. We also show that continuous $R$-valuations have close connections to measures when $R$ is taken to be $\mathbf{I}\mathbb{R}^\star_+$, the interval domain of the extended nonnegative reals: (1) On every coherent topological space, every non-zero, bounded $\tau$-smooth measure $\mu$ (defined on the Borel $\sigma$-algebra), canonically determines a continuous $\mathbf{I}\mathbb{R}^\star_+$-valuation; and (2) such a continuous $\mathbf{I}\mathbb{R}^\star_+$-valuation is the most precise (in a certain sense) continuous $\mathbf{I}\mathbb{R}^\star_+$-valuation that approximates $\mu$, when the support of $\mu$ is a compact Hausdorff subspace of a second-countable stably compact topological space. This in particular applies to Lebesgue measure on the unit interval. As a result, the Lebesgue measure can be identified as a continuous $\mathbf{I}\mathbb{R}^\star_+$-valuation. Additionally, we show that the latter is minimal.
The flocking motion control is concerned with managing the possible conflicts between local and team objectives of multi-agent systems. The overall control process guides the agents while monitoring the flock-cohesiveness and localization. The underlying mechanisms may degrade due to overlooking the unmodeled uncertainties associated with the flock dynamics and formation. On another side, the efficiencies of the various control designs rely on how quickly they can adapt to different dynamic situations in real-time. An online model-free policy iteration mechanism is developed here to guide a flock of agents to follow an independent command generator over a time-varying graph topology. The strength of connectivity between any two agents or the graph edge weight is decided using a position adjacency dependent function. An online recursive least squares approach is adopted to tune the guidance strategies without knowing the dynamics of the agents or those of the command generator. It is compared with another reinforcement learning approach from the literature which is based on a value iteration technique. The simulation results of the policy iteration mechanism revealed fast learning and convergence behaviors with less computational effort.
We study the fair allocation of indivisible goods among agents with identical, additive valuations but individual budget constraints. Here, the indivisible goods--each with a specific size and value--need to be allocated such that the bundle assigned to each agent is of total size at most the agent's budget. Since envy-free allocations do not necessarily exist in the indivisible goods context, compelling relaxations--in particular, the notion of envy-freeness up to $k$ goods (EFk)--have received significant attention in recent years. In an EFk allocation, each agent prefers its own bundle over that of any other agent, up to the removal of $k$ goods, and the agents have similarly bounded envy against the charity (which corresponds to the set of all unallocated goods). Recently, Wu et al. (2021) showed that an allocation that satisfies the budget constraints and maximizes the Nash social welfare is $1/4$-approximately EF1. However, the computation (or even existence) of exact EFk allocations remained an intriguing open problem. We make notable progress towards this by proposing a simple, greedy, polynomial-time algorithm that computes EF2 allocations under budget constraints. Our algorithmic result implies the universal existence of EF2 allocations in this fair division context. The analysis of the algorithm exploits intricate structural properties of envy-freeness. Interestingly, the same algorithm also provides EF1 guarantees for important special cases. Specifically, we settle the existence of EF1 allocations for instances in which: (i) the value of each good is proportional to its size, (ii) all goods have the same size, or (iii) all the goods have the same value. Our EF2 result extends to the setting wherein the goods' sizes are agent specific.
Functional quantile regression (FQR) is a useful alternative to mean regression for functional data as it provides a comprehensive understanding of how scalar predictors influence the conditional distribution of functional responses. In this article, we study the FQR model for densely sampled, high-dimensional functional data without relying on parametric or independent assumptions on the residual process, with the focus on statistical inference and scalable implementation. This is achieved by a simple but powerful distributed strategy, in which we first perform separate quantile regression to compute $M$-estimators at each sampling location, and then carry out estimation and inference for the entire coefficient functions by properly exploiting the uncertainty quantification and dependence structure of $M$-estimators. We derive a uniform Bahadur representation and a strong Gaussian approximation result for the $M$-estimators on the discrete sampling grid, serving as the basis for inference. An interpolation-based estimator with minimax optimality is proposed, and large sample properties for point and simultaneous interval estimators are established. The obtained minimax optimal rate under the FQR model shows an interesting phase transition phenomenon that has been previously observed in functional mean regression. The proposed methods are illustrated via simulations and an application to a mass spectrometry proteomics dataset.
The light and soft characteristics of Buoyancy Assisted Lightweight Legged Unit (BALLU) robots have a great potential to provide intrinsically safe interactions in environments involving humans, unlike many heavy and rigid robots. However, their unique and sensitive dynamics impose challenges to obtaining robust control policies in the real world. In this work, we demonstrate robust sim-to-real transfer of control policies on the BALLU robots via system identification and our novel residual physics learning method, Environment Mimic (EnvMimic). First, we model the nonlinear dynamics of the actuators by collecting hardware data and optimizing the simulation parameters. Rather than relying on standard supervised learning formulations, we utilize deep reinforcement learning to train an external force policy to match real-world trajectories, which enables us to model residual physics with greater fidelity. We analyze the improved simulation fidelity by comparing the simulation trajectories against the real-world ones. We finally demonstrate that the improved simulator allows us to learn better walking and turning policies that can be successfully deployed on the hardware of BALLU.
Since the 1950s, machine translation (MT) has become one of the important tasks of AI and development, and has experienced several different periods and stages of development, including rule-based methods, statistical methods, and recently proposed neural network-based learning methods. Accompanying these staged leaps is the evaluation research and development of MT, especially the important role of evaluation methods in statistical translation and neural translation research. The evaluation task of MT is not only to evaluate the quality of machine translation, but also to give timely feedback to machine translation researchers on the problems existing in machine translation itself, how to improve and how to optimise. In some practical application fields, such as in the absence of reference translations, the quality estimation of machine translation plays an important role as an indicator to reveal the credibility of automatically translated target languages. This report mainly includes the following contents: a brief history of machine translation evaluation (MTE), the classification of research methods on MTE, and the the cutting-edge progress, including human evaluation, automatic evaluation, and evaluation of evaluation methods (meta-evaluation). Manual evaluation and automatic evaluation include reference-translation based and reference-translation independent participation; automatic evaluation methods include traditional n-gram string matching, models applying syntax and semantics, and deep learning models; evaluation of evaluation methods includes estimating the credibility of human evaluations, the reliability of the automatic evaluation, the reliability of the test set, etc. Advances in cutting-edge evaluation methods include task-based evaluation, using pre-trained language models based on big data, and lightweight optimisation models using distillation techniques.