亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The fair allocation of mixed goods, consisting of both divisible and indivisible goods, among agents with heterogeneous preferences, has been a prominent topic of study in economics and computer science. In this paper, we investigate the nature of fair allocations when agents have binary valuations. We define an allocation as fair if its utility vector minimizes a symmetric strictly convex function, which includes conventional fairness criteria such as maximum egalitarian social welfare and maximum Nash social welfare. While a good structure is known for the continuous case (where only divisible goods exist) or the discrete case (where only indivisible goods exist), deriving such a structure in the hybrid case remains challenging. Our contributions are twofold. First, we demonstrate that the hybrid case does not inherit some of the nice properties of continuous or discrete cases, while it does inherit the proximity theorem. Second, we analyze the computational complexity of finding a fair allocation of mixed goods based on the proximity theorem. In particular, we provide a polynomial-time algorithm for the case when all divisible goods are identical and homogeneous, and demonstrate that the problem is NP-hard in general. Our results also contribute to a deeper understanding of the hybrid convex analysis.

相關內容

Complex scenario of ultrasound image, in which adjacent tissues (i.e., background) share similar intensity with and even contain richer texture patterns than lesion region (i.e., foreground), brings a unique challenge for accurate lesion segmentation. This work presents a decomposition-coupling network, called DC-Net, to deal with this challenge in a (foreground-background) saliency map disentanglement-fusion manner. The DC-Net consists of decomposition and coupling subnets, and the former preliminarily disentangles original image into foreground and background saliency maps, followed by the latter for accurate segmentation under the assistance of saliency prior fusion. The coupling subnet involves three aspects of fusion strategies, including: 1) regional feature aggregation (via differentiable context pooling operator in the encoder) to adaptively preserve local contextual details with the larger receptive field during dimension reduction; 2) relation-aware representation fusion (via cross-correlation fusion module in the decoder) to efficiently fuse low-level visual characteristics and high-level semantic features during resolution restoration; 3) dependency-aware prior incorporation (via coupler) to reinforce foreground-salient representation with the complementary information derived from background representation. Furthermore, a harmonic loss function is introduced to encourage the network to focus more attention on low-confidence and hard samples. The proposed method is evaluated on two ultrasound lesion segmentation tasks, which demonstrates the remarkable performance improvement over existing state-of-the-art methods.

Goal recognition (GR) involves inferring the goals of other vehicles, such as a certain junction exit, which can enable more accurate prediction of their future behaviour. In autonomous driving, vehicles can encounter many different scenarios and the environment may be partially observable due to occlusions. We present a novel GR method named Goal Recognition with Interpretable Trees under Occlusion (OGRIT). OGRIT uses decision trees learned from vehicle trajectory data to infer the probabilities of a set of generated goals. We demonstrate that OGRIT can handle missing data due to occlusions and make inferences across multiple scenarios using the same learned decision trees, while being computationally fast, accurate, interpretable and verifiable. We also release the inDO, rounDO and OpenDDO datasets of occluded regions used to evaluate OGRIT.

This paper studies computational aspects of an asymptotically distribution-free goodness-of-fit test for non-Gaussian distributions based on the Khmaladze martingale transformation when the location and scale parameters of the distribution are unknown. On top of that, we propose another goodness-of-fit test better than existing one in terms of a statistical power. Simulation studies demonstrate that the proposed test compares favorably with the existing test.

We develop a new technique for proving distribution testing lower bounds for properties defined by inequalities involving the bin probabilities of the distribution in question. Using this technique we obtain new lower bounds for monotonicity testing over discrete cubes and tight lower bounds for log-concavity testing. Our basic technique involves constructing a pair of moment-matching families of distributions by tweaking the probabilities of pairs of bins so that one family maintains the defining inequalities while the other violates them.

Data uncertainties, such as sensor noise or occlusions, can introduce irreducible ambiguities in images, which result in varying, yet plausible, semantic hypotheses. In Machine Learning, this ambiguity is commonly referred to as aleatoric uncertainty. Latent density models can be utilized to address this problem in image segmentation. The most popular approach is the Probabilistic U-Net (PU-Net), which uses latent Normal densities to optimize the conditional data log-likelihood Evidence Lower Bound. In this work, we demonstrate that the PU- Net latent space is severely inhomogenous. As a result, the effectiveness of gradient descent is inhibited and the model becomes extremely sensitive to the localization of the latent space samples, resulting in defective predictions. To address this, we present the Sinkhorn PU-Net (SPU-Net), which uses the Sinkhorn Divergence to promote homogeneity across all latent dimensions, effectively improving gradient-descent updates and model robustness. Our results show that by applying this on public datasets of various clinical segmentation problems, the SPU-Net receives up to 11% performance gains compared against preceding latent variable models for probabilistic segmentation on the Hungarian-Matched metric. The results indicate that by encouraging a homogeneous latent space, one can significantly improve latent density modeling for medical image segmentation.

Practitioners in diverse fields such as healthcare, economics and education are eager to apply machine learning to improve decision making. The cost and impracticality of performing experiments and a recent monumental increase in electronic record keeping has brought attention to the problem of evaluating decisions based on non-experimental observational data. This is the setting of this work. In particular, we study estimation of individual-level causal effects, such as a single patient's response to alternative medication, from recorded contexts, decisions and outcomes. We give generalization bounds on the error in estimated effects based on distance measures between groups receiving different treatments, allowing for sample re-weighting. We provide conditions under which our bound is tight and show how it relates to results for unsupervised domain adaptation. Led by our theoretical results, we devise representation learning algorithms that minimize our bound, by regularizing the representation's induced treatment group distance, and encourage sharing of information between treatment groups. We extend these algorithms to simultaneously learn a weighted representation to further reduce treatment group distances. Finally, an experimental evaluation on real and synthetic data shows the value of our proposed representation architecture and regularization scheme.

The effective control of infectious diseases relies on accurate assessment of the impact of interventions, which is often hindered by the complex dynamics of the spread of disease. We propose a Beta-Dirichlet switching state-space transmission model to track underlying dynamics of disease and evaluate the effectiveness of interventions simultaneously. As time evolves, the switching mechanism introduced in the susceptible-exposed-infected-recovered (SEIR) model is able to capture the timing and magnitude of changes in the transmission rate due to the effectiveness of control measures. The implementation of this model is based on a particle Markov Chain Monte Carlo algorithm, which can estimate the time evolution of SEIR states, switching states, and high-dimensional parameters efficiently. The efficacy of our model and estimation procedure are demonstrated through simulation studies. With a real-world application to British Columbia's COVID-19 outbreak, it indicates approximately a 66.6\% reduction of transmission rate following interventions such as distancing, closures and vaccination. Our proposed model provides a promising tool to inform public health policies aimed at studying the underlying dynamics and evaluating of the effectiveness of interventions during the spread of the disease.

Neural networks have proven to be effective at solving machine learning tasks but it is unclear whether they learn any relevant causal relationships, while their black-box nature makes it difficult for modellers to understand and debug them. We propose a novel method overcoming these issues by allowing a two-way interaction whereby neural-network-empowered machines can expose the underpinning learnt causal graphs and humans can contest the machines by modifying the causal graphs before re-injecting them into the machines. The learnt models are guaranteed to conform to the graphs and adhere to expert knowledge, some of which can also be given up-front. By building a window into the model behaviour and enabling knowledge injection, our method allows practitioners to debug networks based on the causal structure discovered from the data and underpinning the predictions. Experiments with real and synthetic tabular data show that our method improves predictive performance up to 2.4x while producing parsimonious networks, up to 7x smaller in the input layer, compared to SOTA regularised networks.

Clinical trials are vital in advancing drug development and evidence-based medicine, but their success is often hindered by challenges in patient recruitment. In this work, we investigate the potential of large language models (LLMs) to assist individual patients and referral physicians in identifying suitable clinical trials from an extensive selection. Specifically, we introduce TrialGPT, a novel architecture employing LLMs to predict criterion-level eligibility with detailed explanations, which are then aggregated for ranking and excluding candidate clinical trials based on free-text patient notes. We evaluate TrialGPT on three publicly available cohorts of 184 patients and 18,238 annotated clinical trials. The experimental results demonstrate several key findings: First, TrialGPT achieves high criterion-level prediction accuracy with faithful explanations. Second, the aggregated trial-level TrialGPT scores are highly correlated with expert eligibility annotations. Third, these scores prove effective in ranking clinical trials and exclude ineligible candidates. Our error analysis suggests that current LLMs still make some mistakes due to limited medical knowledge and domain-specific context understanding. Nonetheless, we believe the explanatory capabilities of LLMs are highly valuable. Future research is warranted on how such AI assistants can be integrated into the routine trial matching workflow in real-world settings to improve its efficiency.

Object tracking is challenging as target objects often undergo drastic appearance changes over time. Recently, adaptive correlation filters have been successfully applied to object tracking. However, tracking algorithms relying on highly adaptive correlation filters are prone to drift due to noisy updates. Moreover, as these algorithms do not maintain long-term memory of target appearance, they cannot recover from tracking failures caused by heavy occlusion or target disappearance in the camera view. In this paper, we propose to learn multiple adaptive correlation filters with both long-term and short-term memory of target appearance for robust object tracking. First, we learn a kernelized correlation filter with an aggressive learning rate for locating target objects precisely. We take into account the appropriate size of surrounding context and the feature representations. Second, we learn a correlation filter over a feature pyramid centered at the estimated target position for predicting scale changes. Third, we learn a complementary correlation filter with a conservative learning rate to maintain long-term memory of target appearance. We use the output responses of this long-term filter to determine if tracking failure occurs. In the case of tracking failures, we apply an incrementally learned detector to recover the target position in a sliding window fashion. Extensive experimental results on large-scale benchmark datasets demonstrate that the proposed algorithm performs favorably against the state-of-the-art methods in terms of efficiency, accuracy, and robustness.

北京阿比特科技有限公司