亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

It has been rightfully emphasized that the use of AI for clinical decision making could amplify health disparities. A machine learning model may pick up undesirable correlations, for example, between a patient's racial identity and clinical outcome. Such correlations are often present in (historical) data used for model development. There has been an increase in studies reporting biases in image-based disease detection models. Besides the scarcity of data from underserved populations, very little is known about how these biases are encoded and how one may reduce or even remove disparate performance. There are concerns that an algorithm may recognize patient characteristics such as biological sex or racial identity, and then directly or indirectly use this information when making predictions. But it remains unclear how we can establish whether such information is actually used. This article aims to shed some light on these issues by exploring different methodology for assessing the inner working of disease detection models. We explore multitask learning and model inspection to assess the relationship between protected characteristics and prediction of disease. We believe our analysis framework could provide valuable insights in future studies in medical imaging AI. Our findings also call for further research to better understand the underlying causes of performance disparities.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · CASE · 可理解性 · Integration · 輸出 ·
2022 年 4 月 20 日

Since 2010, the output of a risk assessment tool that predicts how likely an individual is to commit severe violence against their partner has been integrated within the Basque country courtrooms. The EPV-R, the tool developed to assist police officers during the assessment of gender-based violence cases, was also incorporated to assist the decision-making of judges. With insufficient training, judges are exposed to an algorithmic output that influences the human decision of adopting measures in cases of gender-based violence. In this paper, we examine the risks, harms and limits of algorithmic governance within the context of gender-based violence. Through the lens of an Spanish judge exposed to this tool, we analyse how the EPV-R is impacting on the justice system. Moving beyond the risks of unfair and biased algorithmic outputs, we examine legal, social and technical pitfalls such as opaque implementation, efficiency's paradox and feedback loop, that could led to unintended consequences on women who suffer gender-based violence. Our interdisciplinary framework highlights the importance of understanding the impact and influence of risk assessment tools within judicial decision-making and increase awareness about its implementation in this context.

Existing methods for arbitrary-shaped text detection in natural scenes face two critical issues, i.e., 1) fracture detections at the gaps in a text instance; and 2) inaccurate detections of arbitrary-shaped text instances with diverse background context. To address these issues, we propose a novel method named Intra- and Inter-Instance Collaborative Learning (I3CL). Specifically, to address the first issue, we design an effective convolutional module with multiple receptive fields, which is able to collaboratively learn better character and gap feature representations at local and long ranges inside a text instance. To address the second issue, we devise an instance-based transformer module to exploit the dependencies between different text instances and a global context module to exploit the semantic context from the shared background, which are able to collaboratively learn more discriminative text feature representation. In this way, I3CL can effectively exploit the intra- and inter-instance dependencies together in a unified end-to-end trainable framework. Besides, to make full use of the unlabeled data, we design an effective semi-supervised learning method to leverage the pseudo labels via an ensemble strategy. Without bells and whistles, experimental results show that the proposed I3CL sets new state-of-the-art results on three challenging public benchmarks, i.e., an F-measure of 77.5% on ICDAR2019-ArT, 86.9% on Total-Text, and 86.4% on CTW-1500. Notably, our I3CL with the ResNeSt-101 backbone ranked 1st place on the ICDAR2019-ArT leaderboard. The source code will be available at //github.com/ViTAE-Transformer/ViTAE-Transformer-Scene-Text-Detection.

As machine learning algorithms become increasingly integrated in crucial decision-making scenarios, such as healthcare, recruitment, and risk assessment, there have been increasing concerns about the privacy and fairness of such systems. Federated learning has been viewed as a promising solution for collaboratively training of machine learning models among multiple parties while maintaining the privacy of their local data. However, federated learning also poses new challenges in mitigating the potential bias against certain populations (e.g., demographic groups), as this typically requires centralized access to the sensitive information (e.g., race, gender) of each data point. Motivated by the importance and challenges of group fairness in federated learning, in this work, we propose FairFed, a novel algorithm to enhance group fairness via a fairness-aware aggregation method, which aims to provide fair model performance across different sensitive groups (e.g., racial, gender groups) while maintaining high utility. This formulation can further provide more flexibility in the customized local debiasing strategies for each client. We build our FairFed algorithm around the secure aggregation protocol of federated learning. When running federated training on widely investigated fairness datasets, we demonstrate that our proposed method outperforms the state-of-the-art fair federated learning frameworks under a high heterogeneous sensitive attribute distribution. We also investigate the performance of FairFed on naturally distributed real-life data collected from different geographical locations or departments within an organization.

When subjected to a sudden, unanticipated threat, human groups characteristically self-organize to identify the threat, determine potential responses, and act to reduce its impact. Central to this process is the challenge of coordinating information sharing and response activity within a disrupted environment. In this paper, we consider coordination in the context of responses to the 2001 World Trade Center disaster. Using records of communications among 17 organizational units, we examine the mechanisms driving communication dynamics, with an emphasis on the emergence of coordinating roles. We employ relational event models (REMs) to identify the mechanisms shaping communications in each unit, finding a consistent pattern of behavior across units with very different characteristics. Using a simulation-based "knock-out" study, we also probe the importance of different mechanisms for hub formation. Our results suggest that, while preferential attachment and pre-disaster role structure generally contribute to the emergence of hub structure, temporally local conversational norms play a much larger role. We discuss broader implications for the role of microdynamics in driving macroscopic outcomes, and for the emergence of coordination in other settings.

The dynamic response of the legged robot locomotion is non-Lipschitz and can be stochastic due to environmental uncertainties. To test, validate, and characterize the safety performance of legged robots, existing solutions on observed and inferred risk can be incomplete and sampling inefficient. Some formal verification methods suffer from the model precision and other surrogate assumptions. In this paper, we propose a scenario sampling based testing framework that characterizes the overall safety performance of a legged robot by specifying (i) where (in terms of a set of states) the robot is potentially safe, and (ii) how safe the robot is within the specified set. The framework can also help certify the commercial deployment of the legged robot in real-world environment along with human and compare safety performance among legged robots with different mechanical structures and dynamic properties. The proposed framework is further deployed to evaluate a group of state-of-the-art legged robot locomotion controllers from various model-based, deep neural network involved, and reinforcement learning based methods in the literature. Among a series of intended work domains of the studied legged robots (e.g. tracking speed on sloped surface, with abrupt changes on demanded velocity, and against adversarial push-over disturbances), we show that the method can adequately capture the overall safety characterization and the subtle performance insights. Many of the observed safety outcomes, to the best of our knowledge, have never been reported by the existing work in the legged robot literature.

We propose in this paper a data driven state estimation scheme for generating nonlinear reduced models for parametric families of PDEs, directly providing data-to-state maps, represented in terms of Deep Neural Networks. A major constituent is a sensor-induced decomposition of a model-compliant Hilbert space warranting approximation in problem relevant metrics. It plays a similar role as in a Parametric Background Data Weak framework for state estimators based on Reduced Basis concepts. Extensive numerical tests shed light on several optimization strategies that are to improve robustness and performance of such estimators.

Recently, numerous studies have demonstrated the presence of bias in machine learning powered decision-making systems. Although most definitions of algorithmic bias have solid mathematical foundations, the corresponding bias detection techniques often lack statistical rigor, especially for non-iid data. We fill this gap in the literature by presenting a rigorous non-parametric testing procedure for bias according to Predictive Rate Parity, a commonly considered notion of algorithmic bias. We adapt traditional asymptotic results for non-parametric estimators to test for bias in the presence of dependence commonly seen in user-level data generated by technology industry applications and illustrate how these approaches can be leveraged for mitigation. We further propose modifications of this methodology to address bias measured through marginal outcome disparities in classification settings and extend notions of predictive rate parity to multi-objective models. Experimental results on real data show the efficacy of the proposed detection and mitigation methods.

In this paper, we investigated whether we can 1) detect participants with ataxia-specific gait characteristics (risk-prediction), and 2) assess severity of ataxia from gait (severity-assessment) using computer vision. We created a dataset of 155 videos from 89 participants, 24 controls and 65 diagnosed with (or are pre-manifest) spinocerebellar ataxias (SCAs), performing the gait task of the Scale for the Assessment and Rating of Ataxia (SARA) from 11 medical sites located in 8 different states across the United States. We develop a computer vision pipeline to detect, track, and separate out the participants from their surroundings and construct several features from their body pose coordinates to capture gait characteristics like step width, step length, swing, stability, speed, etc. Our risk-prediction model achieves 83.06% accuracy and an 80.23% F1 score. Similarly, our severity-assessment model achieves a mean absolute error (MAE) score of 0.6225 and a Pearson's correlation coefficient score of 0.7268. Our models still performed competitively when evaluated on data from sites not used during training. Furthermore, through feature importance analysis, we found that our models associate wider steps, decreased walking speed, and increased instability with greater ataxia severity, which is consistent with previously established clinical knowledge. Our models create possibilities for remote ataxia assessment in non-clinical settings in the future, which could significantly improve accessibility of ataxia care. Furthermore, our underlying dataset was assembled from a geographically diverse cohort, highlighting its potential to further increase equity. The code used in this study is open to the public, and the anonymized body pose landmark dataset is also available upon request.

Present-day atomistic simulations generate long trajectories of ever more complex systems. Analyzing these data, discovering metastable states, and uncovering their nature is becoming increasingly challenging. In this paper, we first use the variational approach to conformation dynamics to discover the slowest dynamical modes of the simulations. This allows the different metastable states of the system to be located and organized hierarchically. The physical descriptors that characterize metastable states are discovered by means of a machine learning method. We show in the cases of two proteins, Chignolin and Bovine Pancreatic Trypsin Inhibitor, how such analysis can be effortlessly performed in a matter of seconds. Another strength of our approach is that it can be applied to the analysis of both unbiased and biased simulations.

Generative Adversarial Networks (GANs) have recently achieved impressive results for many real-world applications, and many GAN variants have emerged with improvements in sample quality and training stability. However, they have not been well visualized or understood. How does a GAN represent our visual world internally? What causes the artifacts in GAN results? How do architectural choices affect GAN learning? Answering such questions could enable us to develop new insights and better models. In this work, we present an analytic framework to visualize and understand GANs at the unit-, object-, and scene-level. We first identify a group of interpretable units that are closely related to object concepts using a segmentation-based network dissection method. Then, we quantify the causal effect of interpretable units by measuring the ability of interventions to control objects in the output. We examine the contextual relationship between these units and their surroundings by inserting the discovered object concepts into new images. We show several practical applications enabled by our framework, from comparing internal representations across different layers, models, and datasets, to improving GANs by locating and removing artifact-causing units, to interactively manipulating objects in a scene. We provide open source interpretation tools to help researchers and practitioners better understand their GAN models.

北京阿比特科技有限公司