Query performance (e.g., execution time) prediction is a critical component of modern DBMSes. As a pioneering cloud data warehouse, Amazon Redshift relies on an accurate execution time prediction for many downstream tasks, ranging from high-level optimizations, such as automatically creating materialized views, to low-level tasks on the critical path of query execution, such as admission, scheduling, and execution resource control. Unfortunately, many existing execution time prediction techniques, including those used in Redshift, suffer from cold start issues, inaccurate estimation, and are not robust against workload/data changes. In this paper, we propose a novel hierarchical execution time predictor: the Stage predictor. The Stage predictor is designed to leverage the unique characteristics and challenges faced by Redshift. The Stage predictor consists of three model states: an execution time cache, a lightweight local model optimized for a specific DB instance with uncertainty measurement, and a complex global model that is transferable across all instances in Redshift. We design a systematic approach to use these models that best leverages optimality (cache), instance-optimization (local model), and transferable knowledge about Redshift (global model). Experimentally, we show that the Stage predictor makes more accurate and robust predictions while maintaining a practical inference latency and memory overhead. Overall, the Stage predictor can improve the average query execution latency by $20\%$ on these instances compared to the prior query performance predictor in Redshift.
Time series anomaly detection (TAD) faces a significant challenge due to the scarcity of labelled data, which hinders the development of accurate detection models. Unsupervised domain adaptation (UDA) addresses this challenge by leveraging a labelled dataset from a related domain to detect anomalies in a target dataset. Existing domain adaptation techniques assume that the number of anomalous classes does not change between the source and target domains. In this paper, we propose a novel Domain Adaptation Contrastive learning for Anomaly Detection in multivariate time series (DACAD) model to address this issue by combining UDA and contrastive representation learning. DACAD's approach includes an anomaly injection mechanism that introduces various types of synthetic anomalies, enhancing the model's ability to generalise across unseen anomalous classes in different domains. This method significantly broadens the model's adaptability and robustness. Additionally, we propose a supervised contrastive loss for the source domain and a self-supervised contrastive triplet loss for the target domain, improving comprehensive feature representation learning and extraction of domain-invariant features. Finally, an effective Centre-based Entropy Classifier (CEC) is proposed specifically for anomaly detection, facilitating accurate learning of normal boundaries in the source domain. Our extensive evaluation across multiple real-world datasets against leading models in time series anomaly detection and UDA underscores DACAD's effectiveness. The results validate DACAD's superiority in transferring knowledge across domains and its potential to mitigate the challenge of limited labelled data in time series anomaly detection.
Multimodal Recommendation focuses mainly on how to effectively integrate behavior and multimodal information in the recommendation task. Previous works suffer from two major issues. Firstly, the training process tightly couples the behavior module and multimodal module by jointly optimizing them using the sharing model parameters, which leads to suboptimal performance since behavior signals and modality signals often provide opposite guidance for the parameters updates. Secondly, previous approaches fail to take into account the significant distribution differences between behavior and modality when they attempt to fuse behavior and modality information. This resulted in a misalignment between the representations of behavior and modality. To address these challenges, in this paper, we propose a novel Dual Representation learning framework for Multimodal Recommendation called DRepMRec, which introduce separate dual lines for coupling problem and Behavior-Modal Alignment (BMA) for misalignment problem. Specifically, DRepMRec leverages two independent lines of representation learning to calculate behavior and modal representations. After obtaining separate behavior and modal representations, we design a Behavior-Modal Alignment Module (BMA) to align and fuse the dual representations to solve the misalignment problem. Furthermore, we integrate the BMA into other recommendation models, resulting in consistent performance improvements. To ensure dual representations maintain their semantic independence during alignment, we introduce Similarity-Supervised Signal (SSS) for representation learning. We conduct extensive experiments on three public datasets and our method achieves state-of-the-art (SOTA) results. The source code will be available upon acceptance.
Ontology Matching (OM), is a critical task in knowledge integration, where aligning heterogeneous ontologies facilitates data interoperability and knowledge sharing. Traditional OM systems often rely on expert knowledge or predictive models, with limited exploration of the potential of Large Language Models (LLMs). We present the LLMs4OM framework, a novel approach to evaluate the effectiveness of LLMs in OM tasks. This framework utilizes two modules for retrieval and matching, respectively, enhanced by zero-shot prompting across three ontology representations: concept, concept-parent, and concept-children. Through comprehensive evaluations using 20 OM datasets from various domains, we demonstrate that LLMs, under the LLMs4OM framework, can match and even surpass the performance of traditional OM systems, particularly in complex matching scenarios. Our results highlight the potential of LLMs to significantly contribute to the field of OM.
In the last few years, the research interest in Vision-and-Language Navigation (VLN) has grown significantly. VLN is a challenging task that involves an agent following human instructions and navigating in a previously unknown environment to reach a specified goal. Recent work in literature focuses on different ways to augment the available datasets of instructions for improving navigation performance by exploiting synthetic training data. In this work, we propose AIGeN, a novel architecture inspired by Generative Adversarial Networks (GANs) that produces meaningful and well-formed synthetic instructions to improve navigation agents' performance. The model is composed of a Transformer decoder (GPT-2) and a Transformer encoder (BERT). During the training phase, the decoder generates sentences for a sequence of images describing the agent's path to a particular point while the encoder discriminates between real and fake instructions. Experimentally, we evaluate the quality of the generated instructions and perform extensive ablation studies. Additionally, we generate synthetic instructions for 217K trajectories using AIGeN on Habitat-Matterport 3D Dataset (HM3D) and show an improvement in the performance of an off-the-shelf VLN method. The validation analysis of our proposal is conducted on REVERIE and R2R and highlights the promising aspects of our proposal, achieving state-of-the-art performance.
3D Gaussian splatting has achieved very impressive performance in real-time novel view synthesis. However, it often suffers from over-reconstruction during Gaussian densification where high-variance image regions are covered by a few large Gaussians only, leading to blur and artifacts in the rendered images. We design a progressive frequency regularization (FreGS) technique to tackle the over-reconstruction issue within the frequency space. Specifically, FreGS performs coarse-to-fine Gaussian densification by exploiting low-to-high frequency components that can be easily extracted with low-pass and high-pass filters in the Fourier space. By minimizing the discrepancy between the frequency spectrum of the rendered image and the corresponding ground truth, it achieves high-quality Gaussian densification and alleviates the over-reconstruction of Gaussian splatting effectively. Experiments over multiple widely adopted benchmarks (e.g., Mip-NeRF360, Tanks-and-Temples and Deep Blending) show that FreGS achieves superior novel view synthesis and outperforms the state-of-the-art consistently.
Image data have been extensively used in Deep Neural Network (DNN) tasks in various scenarios, e.g., autonomous driving and medical image analysis, which incurs significant privacy concerns. Existing privacy protection techniques are unable to efficiently protect such data. For example, Differential Privacy (DP) that is an emerging technique protects data with strong privacy guarantee cannot effectively protect visual features of exposed image dataset. In this paper, we propose a novel privacy-preserving framework VisualMixer that protects the training data of visual DNN tasks by pixel shuffling, while not injecting any noises. VisualMixer utilizes a new privacy metric called Visual Feature Entropy (VFE) to effectively quantify the visual features of an image from both biological and machine vision aspects. In VisualMixer, we devise a task-agnostic image obfuscation method to protect the visual privacy of data for DNN training and inference. For each image, it determines regions for pixel shuffling in the image and the sizes of these regions according to the desired VFE. It shuffles pixels both in the spatial domain and in the chromatic channel space in the regions without injecting noises so that it can prevent visual features from being discerned and recognized, while incurring negligible accuracy loss. Extensive experiments on real-world datasets demonstrate that VisualMixer can effectively preserve the visual privacy with negligible accuracy loss, i.e., at average 2.35 percentage points of model accuracy loss, and almost no performance degradation on model training.
We present a novel end-to-end algorithm (PoCo) for the indoor RGB-D place recognition task, aimed at identifying the most likely match for a given query frame within a reference database. The task presents inherent challenges attributed to the constrained field of view and limited range of perception sensors. We propose a new network architecture, which generalizes the recent Context of Clusters (CoCs) to extract global descriptors directly from the noisy point clouds through end-to-end learning. Moreover, we develop the architecture by integrating both color and geometric modalities into the point features to enhance the global descriptor representation. We conducted evaluations on public datasets ScanNet-PR and ARKit with 807 and 5047 scenarios, respectively. PoCo achieves SOTA performance: on ScanNet-PR, we achieve R@1 of 64.63%, a 5.7% improvement from the best-published result CGis (61.12%); on Arkit, we achieve R@1 of 45.12%, a 13.3% improvement from the best-published result CGis (39.82%). In addition, PoCo shows higher efficiency than CGis in inference time (1.75X-faster), and we demonstrate the effectiveness of PoCo in recognizing places within a real-world laboratory environment.
Neural implicit scene representations have recently shown encouraging results in dense visual SLAM. However, existing methods produce low-quality scene reconstruction and low-accuracy localization performance when scaling up to large indoor scenes and long sequences. These limitations are mainly due to their single, global radiance field with finite capacity, which does not adapt to large scenarios. Their end-to-end pose networks are also not robust enough with the growth of cumulative errors in large scenes. To this end, we introduce PLGSLAM, a neural visual SLAM system capable of high-fidelity surface reconstruction and robust camera tracking in real-time. To handle large-scale indoor scenes, PLGSLAM proposes a progressive scene representation method which dynamically allocates new local scene representation trained with frames within a local sliding window. This allows us to scale up to larger indoor scenes and improves robustness (even under pose drifts). In local scene representation, PLGSLAM utilizes tri-planes for local high-frequency features with multi-layer perceptron (MLP) networks for the low-frequency feature, achieving smoothness and scene completion in unobserved areas. Moreover, we propose local-to-global bundle adjustment method with a global keyframe database to address the increased pose drifts on long sequences. Experimental results demonstrate that PLGSLAM achieves state-of-the-art scene reconstruction results and tracking performance across various datasets and scenarios (both in small and large-scale indoor environments).
Reasoning is a fundamental aspect of human intelligence that plays a crucial role in activities such as problem solving, decision making, and critical thinking. In recent years, large language models (LLMs) have made significant progress in natural language processing, and there is observation that these models may exhibit reasoning abilities when they are sufficiently large. However, it is not yet clear to what extent LLMs are capable of reasoning. This paper provides a comprehensive overview of the current state of knowledge on reasoning in LLMs, including techniques for improving and eliciting reasoning in these models, methods and benchmarks for evaluating reasoning abilities, findings and implications of previous research in this field, and suggestions on future directions. Our aim is to provide a detailed and up-to-date review of this topic and stimulate meaningful discussion and future work.
With the advent of deep neural networks, learning-based approaches for 3D reconstruction have gained popularity. However, unlike for images, in 3D there is no canonical representation which is both computationally and memory efficient yet allows for representing high-resolution geometry of arbitrary topology. Many of the state-of-the-art learning-based 3D reconstruction approaches can hence only represent very coarse 3D geometry or are limited to a restricted domain. In this paper, we propose occupancy networks, a new representation for learning-based 3D reconstruction methods. Occupancy networks implicitly represent the 3D surface as the continuous decision boundary of a deep neural network classifier. In contrast to existing approaches, our representation encodes a description of the 3D output at infinite resolution without excessive memory footprint. We validate that our representation can efficiently encode 3D structure and can be inferred from various kinds of input. Our experiments demonstrate competitive results, both qualitatively and quantitatively, for the challenging tasks of 3D reconstruction from single images, noisy point clouds and coarse discrete voxel grids. We believe that occupancy networks will become a useful tool in a wide variety of learning-based 3D tasks.